
Algorithms. Lecture Notes 5

An Algorithm for Weighted Interval Scheduling

After the Interval Scheduling success we dare to attack a more general problem:
Weighted Interval Scheduling. Let us try and follow the Erliest End First algo-
rithm: Sort the intervals such that f1 < f2 < . . . < fn. Because of the different
weights vi it is no longer true that we can always put the first interval in an
optimal solution X. This interval could have a small weight and intersect some
later, more profitable intervals. This makes the problem essentially more diffi-
cult than Interval Scheduling. But can we extend solutions of smaller instances
to larger instances in some other way?

We may decide for each interval in the sequence to add it to X or not. This
sounds like exhaustive search. However, a striking observation regarding the
“interval structure” of the problem limits this combinatorial explosion: Once
we have decided the status the first j intervals and obtained several possible sets
of disjoint intervals with the same rightmost fi (i ≤ j), it suffices to keep only
one of these partial solutions, namely one with maximum total weight. (This
is a crucial moment! Make sure that you fully understand why this is correct.)
Hence, at any time we have to memoize at most n partial solutions (one for
every fi), rather than some exponential number.

Now we state the resulting algorithm, along with the correctness arguments,
in a more formal notation. For j = 1, . . . , n, let OPT (j) denote the maximum
weight we can achieve by selecting disjoint intervals from the first j intervals,
i.e., from those with endpoints f1 < f2 < . . . < fj . We will inductively compute
every OPT (j) from the previously computed OPT (i), i < j. Trivially, we have
OPT (1) = v1. Now suppose that all OPT (i), i < j, are already known. For
the jth interval [sj , fj ] we have two options: to add it to the solution or not.
If we don’t, then the best total value is, clearly, the maximum of all OPT (i),
i < j. (There is no reason to consider any partial solution worse than that.)
Even simpler: Since OPT (1) ≤ OPT (2) ≤ OPT (3) ≤ . . ., the optimum is
OPT (j − 1) in this case. If we decide to put [sj , fj ] in the solution, we can add
vj to the total value, but we have to make sure that the new interval does not
intersect an earlier one. For this step we need some auxiliary function: Let p(j)
be the largest index i such that fi < sj . Then we can take the known solution
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with value OPT (p(j)) and add the new interval. Altogether we have shown
that the following formula is correct:

OPT (j) = max{OPT (j − 1), OPT (p(j)) + vj}.

This part of the algorithm amounts to a simple for-loop, with all OPT (j) stored
in an array. Of course, prior to this calculation we must compute and store all
the p(j) in another array. (The vj , sj , fj are already given in arrays.) It is
easy to compute the p(j) in a single scan: We also sort the sj in ascending
order. Then we determine, for every j, the largest fi < sj . Since we have
sorted the sj , it suffices to move a pointer in the sorted array of the fi. Hence
we can compute all p(j) in O(n) time, plus the time for sorting. The for-loop
that computes the OPT (j) values needs O(n) time; this should be obvious: In
every iteration we do one addition and one comparison. (Here we assume that
addition and comparison of two numbers are elementary operations.)

Note that the formula in the for-loop is recursive: OPT (j) is computed by
recurring to function values for smaller arguments. But beware: It would be
a big practical mistake to implement this formula in a recursive fashion, i.e.,
as a subroutine with recursive calls to itself! What would happen? Every call
creates two new calls, so that the process splits up into a tree of independent
calculations, where the same OPT (j) are computed over and over again in
many different branches (unless our compiler is optimized in the way that it
recognizes repeated calls with the same input parameter and just returns the
function value). The time would be exponential, and we abandon the whole
idea that made the algorithm efficient, namely that every OPT (j) needs to be
computed only once. This example illustrates the importance of understanding
the structure of an algorithm. It is not enough to hack formulas in the computer.

Now, have we solved our problem? No. We have computed OPT (n), but
how do we get a subset of disjoint intervals that realizes this profit? An ob-
vious idea is: Whenever we compute and store a new value OPT (j), we also
store a corresponding set of intervals. (We know whether the jth interval has
been added or not.) However, this would require many copy operations and
add a factor O(n) to our time bound, resulting in O(n2) time. Compared to
exponential time this is still good, however, unnecessarily slow. Surprisingly
we can construct a solution much faster, using only the stored values OPT (j):
Remember how we obtained OPT (n). We compared two values, and depending
on which was larger, we took the nth interval or not. Only by reviewing the
OPT values we see which decision had led to the optimum. Next we review
either OPT (j − 1) or OPT (p(j)) in the same way, and we find out whether
the considered interval was taken or not. And so on. In other words, we trace
back the sequence of optimal decisions. This procedure gives us some optimal
solution in another O(n) steps.
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Dynamic Programming versus Greedy

The scheme used in the above algorithm is called dynamic programming,
mainly for historical reasons. It can be characterized as follows.

For a given instance of a problem, we consider all solutions of sub-instances
that may be part of an optimal overall solution. It is enough to keep one opti-
mal solution to every sub-instance. These solutions are extended to larger sub-
instances in an incremental fashion. A recursion formula specifies how to com-
pute the optimal value from the already known values for smaller sub-instances.

This approach works well if we can limit the number of sub-instances to
consider, ideally by a polynomial bound. (This distinguishes dynamic program-
ming from exhaustive search.) These sub-instances are often defined by some
natural restrictions, like the number of items, or some size bound.

An array is filled step by step with the optimal values for the sub-instances.
The time complexity is simply the size of this array, multiplied by the time
needed to compute each value. Although this array displays only the values of
optimal solutions, an actual solution is easy to reconstruct in a backtracing
procedure where we examine on which way the optimum has been reached. The
time for backtracing is smaller than the time for computing the optimal values,
as we have to trace back only one path in the array.

This outline may still appear a bit nebulous. The best way to fully un-
derstand dynamic programming is to study a number of problem examples of
different nature, as we will do now. At some point one should notice that the
basic scheme is always the same, only the recursion formula and other specific
details depend on the problem.

Dynamic programming can be viewed as restricted exhaustive search, but
also as an extension of the greedy paradigm. Instead of following only one
path of currently optimal decisions, which may or may not lead to an optimal
overall solution, we follow all such paths that might bring us to the optimum.
Of course, this is feasible only if there are not too many paths to follow. It
is very rewarding to learn this technique. Whereas greedy algorithms work
only for relatively few problems, dynamic programming has considerably more
applications. Our examples are taken from different domains.

Problem: Knapsack

Given: a knapsack of capacity W , and n items, where the ith item has size (or
weight) wi and value vi.

Goal: Select a subset S of these items that fits in the knapsack (i.e., with∑
i∈S wi ≤W ) and has the largest possible sum of values v =

∑
i∈S vi.
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Motivations:

• Packing goods of high value (or high importance) in a container.

• Allocating bandwith to messages in a network.

• Placing files in fast memory. The values may indicate access frequencies.

• In a simplified model of a consumer, the capacity is a budget, the values
are utilities, and the consumer asks himself what he could buy to maximize
his happiness.

Problem: Subset Sum

Given: n numbers wi, (i = 1, . . . , n) and another number W . (All wi are
positive, and not necessarily distinct.)

Goal: Select a subset S of the given numbers, such that
∑

i∈S wi is as large as
possible, but no larger than W . In particular, find out whether there is even a
solution with

∑
i∈S wi = W .

Motivations:

• This is a special case of the Knapsack problem where vi = wi for all i.
The goal is to make use of the capacity as good as possible.

• Manufacturing: Suppose that we want to cut up n pieces of lengths wi

(i = 1, . . . , n), and among our raw materials there is a piece of length W .
How can we cut off some of the desired lengths, so that as little as possible
of this raw material is left over?

• Political decisions: A committee from several countries makes decisions
by weighted majority, where the weight of each country is determined by,
e.g., its population size. Can it happen that countries with exactly half of
the weight say yes/no?

Dynamic Programming for

Subset Sum and Knapsack

A new feature of the next examples of dynamic programming is that we will need
two indices rather than one, which is quite typical. We will also see that the
recursion formula is not always a numerical function. It can also have Boolean
values.
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As an indication that dynamic programming (and nothing simpler) will be
needed for the Knapsack problem, we begin with a natural greedy algorithm and
a small but impressive example of an instance where it miserably fails. Since
we have to pack as much value as possible in a limited space, it is tempting to
re-index the items such that v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn and take the best
items one by one until the knapsack is full. However, consider the following
instance, amazingly with only two items: v1 = 10ε, w1 = ε, v2 = 90, w2 = 10,
W = 10. The optimal solution is item 2 with value 900, but the above greedy
algorithm would take item 1 which has a better value-per-weight ratio, and
this rules out the profitable item 2. By making ε > 0 arbitrarily small, we get
arbitrarily bad greedy solutions.

Let us turn to dynamic programming instead. First we consider the Subset
Sum problem in the case when an exact sum is required: Given numbers W
and wi, i = 1, . . . , n, find a subset whose sum is exactly W , or confirm that
no solution exists. We assume that all these numbers are integer. (Arbitrary
rational numbers can be multiplied with their greatest common divisor, without
changing the problem.) It is convenient to call W the capacity and to imagine
that we pack items of sizes wi in a knapsack.

The obvious idea for dynamic programming is: Consider the items in the
given order and decide whether to choose the current item or not. But, in
contrast to Interval Scheduling, it is not enough to use j as the only argument
in our recursion formula: Our decisions influence the remaining capacity, and
we have to keep track on the capacity as well. Therefore we need a second
argument in our “dynamic programming function”. We define: P (j, w) = 1 if
some subset from the first j items has the sum w, and P (j, w) = 0 else. Our
function has Boolean values 1 (true) and 0 (false). There is nothing to optimize,
we only want to know (a) whether a solution exists and (b) in the positive case
we want some solution.

To define a suitable function is only the first step in the process of designing
a dynamic programming algorithm. The second step is to find an efficient rule to
actually compute the values of this function, for any given instance. The value
that we eventually want is P (n,W ). Suppose that we have already computed
the P (i, y) for all i < j and y < w. If we do not choose the jth item, we just
copy the solution for j − 1. If we choose the jth item, the capacity used up
before this step was by wi units smaller. Since these are the only possible cases,
we can compute each P (j, w) by the following Boolean expression:

P (j, w) = P (j − 1, w) ∨ P (j − 1, w − wj).

Initialization is trivial: P (0, w) = 0 for all w > 0, and P (j, 0) = 1 for
all j, since the empty set is a solution with sum 0. We can also assume that
P (j − 1, w − wj) = 0 for w < wj , because no solution with negative size exists.
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Note that the number nW of sub-instances is still reasonably small. In ev-
ery step we need to know which is the current item, and how much capacity
is already used, and this information is enough. For each pair j, w it is com-
pletely irrelevant which of the previous items we have taken. Again, this avoids
combinatorial explosion.

The “art” of dynamic programming is to recognize such parameters that
limit the number of sub-instances to be considered for the given problem. This
is the creative step which requires some problem analysis. But once we have
found suitable parameters, the development of the algorithm is usually pretty
straightforward.

Back to our problem: In the case that P (n,W ) = 1, we can reconstruct
a solution by backtracing. The total time complexity is O(nW ), since the
computation of every P (j, w) needs O(1) operations. However, be aware that
this is not a polynomial time bound! Number W is exponential in its length,
which is O(logW ) digits. Hence nW cannot be polynomially bounded in the
input length. Still, if W < 2n then the dynamic programming algorithm is
faster than exhaustive search. And W < 2n is often true in practical instances.

Next we consider the more general optimization version of Subset Sum: If
no subset has exactly the desired sum W , compute a subset with the largest
possible sum below W . (“Pack a knapsack as full as possible.”) The only new
twist is that we must memoize the optimal sum rather than a Boolean value.
Accordingly, we define OPT (j, w) as the largest number ≤ w that can be a sum
of values wi of a subset of the first j items. Without much further explanation
it should be clear that:

OPT (j, w) = max{OPT (j − 1, w), OPT (j − 1, w − wj) + wj},

with initialization OPT (0, w) = 0 for all w, and OPT (j, 0) = 0 for all j. We
can also assume OPT (j − 1, w − wj) = 0 for w < wj .

Now we are ready to solve the general Knapsack problem with sizes wj and
profit values vj , almost as a byproduct of our discussion. Define OPT (j, w) to
be the maximum total value of a subset from the first j items with total size
at most w. Because only some minor modification is necessary, we give the
recursive formula straight away:

OPT (j, w) = max{OPT (j − 1, w), OPT (j − 1, w − wj) + vj}.

Finally, consider a variant of the Knapsack problem where arbitrarily many
copies of every item are available. Surprisingly, yet another slight modification
of the recursive formula solves it immediately:

OPT (j, w) = max{OPT (j − 1, w), OPT (j, w − wj) + vj}.

Why is it correct? We leave it to you to think about it.
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