
Algorithms. Lecture Notes 4

Problem: Interval Scheduling

Given: a set of n intervals [si, fi], i = 1, . . . , n, on the real axis. (An interval
[s, f ] is defined as the set of all real numbers t with s ≤ t ≤ f .)

Goal: Select a subset X of these intervals, as many as possible, which are
pairwise disjoint.

Remark: We may suppose that all the 2n start and end points are distinct.
Otherwise we can make them distinct by slightly extending some intervals, with-
out creating new intersections.

Motivations:
Some resource is requested by users for certain periods of time, described by

intervals with start si and finish fi. That is, a problem instance is a booking
list with n intervals. Unfortunately, the intervals of many requests may overlap,
because reservations have been made independently by several users. Our goal
is to accept as many as possible of these requests.

Algorithm for Interval Scheduling

A naive algorithm would examine all subsets of the given intervals and take
O(n2n) time. Let us try and develop a much faster algorithm.

Here is a good starting point for algorithm development in general: Suppose
that we are already able to solve the problem for smaller instances, how can we
use the partial solutions to solve the overall instance? Since instances of most
computational problems can be split into smaller instances of the same problem
in natural ways, this is a very fruitful approach.

In the case of Interval Scheduling we may ask more specifically: Suppose we
know already how to find the best solution for less than n intervals. Can we
perhaps make a decision for one interval (to put it in the solution X or not), and
then solve the remaining instance? However, we have many options to choose
this one distinguished interval.

1



Approaches That Fail

A tempting idea is to serve the first request, i.e., the one with smallest si. That
is, we put this interval [si, fi] in X and, of course, remove all intervals that
intersect [si, fi], and continue with the same rule. But the drawback is obvious:
The first interval could be very long. It could even intersect all others.

Apparently we should take the lengths fi − si into account. Let us make
another attempt: First put the shortest interval [si, fi] in X. Unfortunately,
also the shortest interval does not necessarily belong to an optimal solution.
The smallest counterexample has only three intervals and is easy to see! This
rule does not work either.

We should analyze the reasons for these failures and learn from them. Our
selection rules were bad because the selected intervals may overlap too many
other intervals. This suggests yet another idea: Put an interval in X that
intersects the smallest number of other intervals. Sadly, this rule fails, too.
(But this time it is a little harder to find a counterexample.)

It is doubtful whether we will find, in this way, any algorithm that works. It
is time to apply creativity. What else could be a good candidate for an interval
to put in X? We may try further choices until we are lucky, or we decide to
give up at some point. What we can try depends on the problem structure. At
least, the principle of reducing a given problem to smaller instances guides our
search for an idea.

“Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.”
(Samuel Beckett)

Earliest End First

For the Interval Scheduling problem, persistent search is finally crowned by suc-
cess: Reviewing the counterexamples again, we may notice that in the last two
attempts the selected intervals were somewhere in the middle of the schedule.
What if we come back to the original idea and look at the beginning of the sched-
ule? But taking the interval with earliest starting point was bad. Instead, let us
take the interval with the earliest endpoint! The rationale is that this interval is
in conflict with the smallest number of other intervals in the remaining instance
to the right of its endpoint. Before we investigate whether this rule constitutes
a correct algorithm, we write the proposed algorithm more explicitly:

Earliest End First: Sort the intervals according to their right endpoints. That
is, re-index them so that f1 < f2 < . . . < fn. Put the interval with the smallest
fi in X, and discard all intervals that intersect this first interval. Repeat this
step until every interval is either in X or discarded.

2



This time we will not detect counterexamples. But after the bad experiences
where we saw plausible rules breaking down, it should be clear that we need an
optimality proof. It is not enough to say that no counterexamples are known.
There might exist some, but they might be relatively large and hard to see (as
it happened with one of the wrong algorithms above).

Correctness

For the proposed algorithm Earliest End First we claim: There exists some
optimal solution Y containing the interval x := [s1, f1].

If this claim is true, we can already conclude correctness of Earliest End
First. Why? The claim says that it is safe to put x in X. After this first step,
the algorithm removes all intervals intersecting x. This is also safe, because a
solution with x cannot contain any of these discarded intervals. It remains to
compute an optimal solution for the remaining intervals, and we can repeat the
argument. You may have recognized that this reasoning is induction on n,
where the claim provides the induction step.

Finally we prove the claim. Consider any optimal solution Y with x /∈ Y . We
will transform Y into an optimal solution that contains x. If x has no conflicts
with any intervals in Y , we can add x to Y , contradicting the assumption that
Y was optimal. Thus, x intersects some interval y ∈ Y . At this point we use
that x has the smallest fi. (This fact must play a role somewhere in the proof!)
Note that x intersects only one y ∈ Y , since the intervals in Y are pairwise
disjoint. Thus we can replace y with x and obtain another optimal solution
with x, as desired. The claim is proved, and the algorithm is correct.

An alternative approach to proving correctness is a stay-ahead argument:
For any solution X, define fX(k) to be the end of the kth interval in X, in
the order from left to right. Then we claim: If Y is the greedy solution and X
is any valid solution, then we have fY (k) ≤ fX(k) for all k. (In words: “The
greedy algorithm stays ahead.”) This claim can be proved by induction on k,
and again the optimality of Earliest End First follows easily from the claim.

Time

The next step is to think about implementation details that make the algorithm
efficient. We may create two copies of each interval, sort them by ascending fi
and ascending si, respectively, and put them in two linked lists. The two copies
of each interval are connected by pointers, too. In the fi list we can always find
the smallest fi in O(1) time: It is simply the first element. The intervals that
intersect this [si, fi] are exactly those with sj < fi. That is, we can take the
first elements from the other list, until value fi is reached. These intervals are
deleted in both lists, using the pointers. We spend only O(1) time on each copy
of an interval. Thus we need O(n) time in total, plus the time for sorting.

3



To What End Do We Study Algorithm Theory?

Various computational problems are important, and as we have seen, fast al-
gorithms are important. Does that mean that we have to learn a suite of fast
algorithms for the most frequent problems? Yes, but this is not enough. Practi-
cal problems rarely arise in nice textbook form, and usually we cannot take an
algorithm from the shelves. Often we must adjust or combine algorithms that
are known for similar problems or for parts of a given problem. To be able to
do this, we need a profound understanding of how and why these algorithms
work. We have to understand the underlying ideas of algorithms, not only the
particular steps. Moreover, new computational problems will in general require
new algorithms. There is no universal recipe for developing good algorithms,
except some general guidelines and techniques. The main part of this course
provides some of these general design techniques, a basic toolkit so to speak.
We illustrate and practice them on various problem examples. But still the
actual algorithm design for a given problem remains a trial-and-error process.
(Compare it to craft: Even if one knows one’s trade, every application is a bit
different.) The selected problems are, hopefully, also of some relevance by their
own. But the emphasis is on the design process, rather than on the ready-to-
use algorithms for specifc problems. In the Interval Scheduling example we were
quite detailed about solution attempts, including failing attempts, in order to
stress this creative process and not only the final algorithm.

We also have to learn how to prove correctness of a new algorithm.

Myth: Correctness proofs are not needed, we can simply test our algorithms
on some instances.

Already the Interval Scheduling example has shown that this is not true!
Various algorithms appeared to be plausibe, but they failed. By not caring
about correctness proofs we may happily accept erroneous algorithms. Proofs
are not a luxury, just made to intellectually please a few researchers. Rather, it
should be clear that testing alone cannot guarantee correctness. We may pick,
by good luck, some test instances where our algorithm yields the correct result,
but it may have a hidden error that shows up in other instances. This can
have fatal consequences, especially in sensible technical systems controlled by
algorithms, and so this matter touches even questions of ethics in engineering.

In a more general perspective, proving correctness means to prove that there
exists no counterexample, and proving non-existence of an object can be tricky:
In order to show that white rabbits exist, it suffices to present one. But how
do we prove that no blue rabbits exist?! It is not enough to say “I have never
seen one”, but we need general arguments to prove that we will never see one in
the future either. Theferfore, admittedly, proving properties such as correctness
can be a difficult business, but who else should do it, if not the persons who
develop the algorithms?

4



Now we can summarize our main goal: Develop correct algorithms with low
worst-case time bounds, which are, preferably, moderate polynomials.

About Greedy Algorithms

Earliest End First is an example of a greedy algorithm. These are algorithms
which, at every moment, make the currently best choice, according to some sim-
ple optimality criterion. (This is not a formal definition, just a circumscription.)
In this sense, greedy algorithms are “myopic”.

Myth: Take the best, ignore the rest. If we take an optimal decision in every
step, then the overall result will be optimal, too.

In fact, most greedy algorithms are wrong, and counterexamples are often
amazingly small. As we have seen, we do need correctness proofs. The scheme
we used to prove optimality of Earliest End First is quite common for greedy
algorithms: Consider any optimal solution. Then transform it, to get another
optimal solution which is “one step closer” to the solution our algorithm would
produce. By induction, we reach the algorithm’s solution in this way, hence it
is optimal. A transformation step typically consists of exchanging some items
of a solution. Therefore we speak of an exchange argument.

Problem: Weighted Interval Scheduling

Given: a set of n intervals [si, fi], i = 1, . . . , n, on the real axis. Every interval
has also a positive weight vi.

Goal: Select a subset X of these intervals which are pairwise disjoint and have
maximum total weight.

Motivations:
Similar to Interval Scheduling, but here the requests have different impor-

tance. The weights might be profits, e.g., fees obtained from the customers.

5


