
Lecture 3
Literature: Chapter 4.5-4.7 + slides
·Greedy algorithms
·Minimum spanning trees
·Minimum spanning tree property

(called cut-property in book)
· Kruskals algorithm
·Merge-Find sets (MF-sets)

(also called Union-Find sets)
· (Priority queues)
· Clustering

(You should have seen most of this in a
datastructure course so it's a lot of repetition.
New stuff is perhaps:
the proofs, the MF-set structure and clustering)
Next time:
unweighted interval scheduling and "greed
vs. weighted interval scheduling and dynamic
programming"

F3.kruskal 2 1

Greedy algorithms
A globally optimal solution can be arrived at
by making locally optimal (greedy) choices.
·Greedy algorithms builds the solution in

small steps. At every step it always chooses
what seems to be the best choice “right
now” in a local context without looking at
the consequences further ahead.

· The choice made by a greedy algorithm may
depend on choices so far, but it cannot
depend on any future choices or on the
solutions to sub-problems i.e.
- the decision/choise is based on some
insight about the problem e.g. a heuristic.
- once it has made a decision it never
changes it.

F3.kruskal 2 2

So make whatever choice seems best at the
moment and then solve the sub-problem
arising after the choice is made.

 Of course, we must prove that a greedy
choice at each step yields a globally optimal
solution.

Typical examples of well known greedy
algorithms with optimal results are:
• Kruskal and Prims algorithms for MST.
• Dijkstras algorithm for shortest paths in a
graph.
• Huffmans algorithm that generates code for
optimal message lengths.

Important: greed doesn’t always work!
=> the correctness proof is important

F3.kruskal 2 3

What influence optimality
of greedy alg.?

1 - What you are greedy with

Given n divisible objects
(say 1 ton of sand, 1 ton of salt...)
and a “knapsack”
(a wheel-barrow, a truck …)

Object i has weight wi and benefit bi

and the knapsack has capacity W.

If a part of object i, say xi, 0 ≤ xi ≤ 1, is put
in the knapsack we get a profit of bi ∗ xi.
Fill the knapsack to maximize the profit.

What to be greedy with?

F3.kruskal 2 4

Let’s look at an example:
Assume that n = 3, W = 20,
bi = (25, 24, 15) and wi = (18, 15, 10).

 a) Choose the object with largest benefit
i.e. choose as much as possible from the first
(b1=25), and then from the second (b2=24)...
all of the first (18) plus 2/15 of the second=>
25+2/15∗24=28.2

 b) Choose the object with smallest weight
i.e. as much as possible from the last (w3 = 10)
and then from the second (w2 = 15)...
=> 15+2/3∗24 = 31

c) Choose a balance between benefit and
weight
i.e. the object with maximal bnefit/weight
bi/wi = (1.39, 1.6, 1.5)

i.e. as much as possible from the second=>
24+1/2∗15 = 31.5 (optimal in this case)

F3.kruskal 2 5

What influence optimality of greedy alg.?
2 - What input looks like

Assume that we have coin values 1, 5, 10 and
25 “krona” and we want to give back change
to a buyer with as few coins as possible.
Assume the change is 63 “krona”
The greedy approach

“choose the largest coin smaller than
what is left”

works fine here. We get
2*25, 1*10, 3*1 “krona”,
(63-25=38, 38-25=13, 13-10=3, 3-1=2, ...)

But optimality depends on the coins values
If we have the coins 1, 5 and 11 “krona”
(sigh) it doesn’t work
For ex. change for 15 “krona” gives us
11+1+1+1+1 but
5+5+5 is better.

F3.kruskal 2 6

Free trees

A free tree is a connected graph without
cycles.
it has exactly n-1 edges

add one edge => cycle
remove one edge => not connected

Spanning trees
A spanning tree is a free tree connecting all
nodes in a graph.
We are interested in
minimum spanning trees (MST)
 (minimum ∑edgecost)

F3.kruskal 2 7

Minimum spanning trees:
An old problem (algorithms from 1926!)
Given a graph G = (V, E),
find a subset of the edges T ⊆ E such that
(V, T) is a spanning tree with min. edge cost.

Interesting because:
· frequently occurring problem
· can be used to solve many problems
·minimum cost for different networks
· cluster problems
· approximation algorithm for TSP

· good example of a greedy algorithm and
· easy to find greedy algorithms for MST!
· an “exchange of argument” proof
· you need interesting data structures

A general graph has exponentially many
spanning trees so it would be great to have
an idea for how to generate one...

F3.kruskal 2 8

Minimum Spanning Tree property

(4.17) Let G = (V, E) be a connected graph
with positive edge costs.
Assume all costs are distinct.
Let S be any subset of nodes from G = (V, E)
that is neither empty nor equal to V, and
let edge e = (v, w) be the minimum-cost edge
with one end in S and the other in V-S,

Then every minimum spanning tree contains
the edge e.

Thanks to
the MST property it's easy to find minimum
spanning trees.
(MST property = cut property in the book)

F3.kruskal 2 9

Greedy proof strategies
– Induction.
– Contradiction.

– Stay ahead. Show that at each step the
greedy algorithm makes a decision which is
at least as good as another algorithm
which we have deemed optimal. So, the
greedy algorithm “stays ahead” of any
optimal solution.
Example: Interval scheduling

– Exchange argument. Gradually transform
any solution, without violating its
optimality, to the one found by the greedy
algorithm . Example: MST-property,
Minimizing lateness

– Structural. Establish a lower bound on the
optimality of any solution for a particular
problem. Then show that your greedy
algorithm always achieves this lower
bound. Example: Interval partitioning.

F3.kruskal 2 10

Proof of MST property (cut-property)
Idea: Variation of exchange arguments.

let edge e = (v, w) be the minimum-cost edge
with one end in S and the other in V-S
Assume T is a spanning tree that does not
contain e.
We need to show that T does not have
minimum cost.

So find an edge e’ in T that is more expensive
than e and exchange them; show that
resulting tree is:
 connected, acyclic and cheaper...
proof on BB and in book

F3.kruskal 2 11

Kruskals algorithm
Idéa: (based on the MST property) always
choose the cheapest edge that does not
create a cycle

first pseudocode:
While there are edges left {

Find cheapest edge
Add to the mst if it does not create a
cycle

}
Kruskal grows a set of connected components
(cc)
- How to prove that it works? →

F3.kruskal 2 12

Optimality of Kruskals given the MST prop.

Claim: Given a connected graph G, Kruskals
alg. produces a minimum spanning tree of G.
(4.18) Show that
(1) the result is a spanning tree and
(2) the edges added are the cheapest

(There is a difference between proving that
-an algorithm idea works i.e. produce a
optimum answer and
- proving that some Java code works.
We need to do the first of these.)

(1) The output of Kruskal is a spanning tree
• it contains no cycles;

that’s how the algorithm works
• it’s connected if G is connected

since the algorithm doesn’t stop until
all nodes are in S.

F3.kruskal 2 13

Alternative 1:
(2) edges added are the cheapest
 Let S be the set of all nodes to which v has
a path at the moment before e = (v, w) is
added by Kruskal.
Then v∈S but w∉S since adding e does not
create a cycle.
No other edge from S to V-S is encountered
yet.
∴ e is the cheapest edge from S to V-S
so by 4.17 (MST prop.) it belongs to the mst

F3.kruskal 2 14

Alternative 2: Use proof by contradiction.
Suppose Kruskal’s algorithm does not always
give the minimum cost spanning tree on some
graph then there is a graph on which it fails.
And if so, there must be a first edge (x, y)
Kruskal adds such that the set of edges
cannot be extended into a minimum spanning
tree.
When we added (x, y) there previously was no
path between x and y, or it would have
created a cycle
Thus if we add (x, y) to the optimal tree it
must create a cycle.
At least one edge in this cycle must have
been added after (x, y), so it must have a
heavier weight.
Deleting this heavy edge leave a better MST
than the optimal tree? => A contradiction
Ref: www.cs.sunysb.edu/~skiena/373/
newlectures/lecture13.pdf

F3.kruskal 2 15

Kruskal - first pseudocode

While there are edges left {
Find cheapest edge
Add to the mst if it does not create a
cycle

}

- How to prove that it works? √ check
Many implement. details are left to deal with:
- How to keep track of cycles? →use MFsets
We start with a graph without edges where
every node is a connected component.
In every step we choose the cheapest edge
that connects two nodes in different
connected components. When every node is in
the same cc where done.
- How to enumerate all edges?
- How to find cheapest edge?
- How to add to the MST?
- What is the complexity?

F3.kruskal 2 16

Short intro to Merge- Find sets
We have some kind of objects.
Could be computers in a network, web pages
on the internet, transistors in a computer,
pixels in a digital photo and more abstract
things like assignment statements.
We want to create disjoint sets of objects
that are connected.
Find queries: are two objects in the same set?
Union commands: replace sets containing two
items by their union.

Find and union commands may be intermixed.
Number of operations M can be huge.
Number of objects N can be huge.
What is an efficient algorithm for MF-sets?

F3.kruskal 2 17

1

2 3
4 5 6

7

second pseudocode version
adding more detail: using Mfsets with each
node in separate component

Cc = Connected components (the MF-set)
while nbrOfCc > 1 loop

(v, w) = get cheapest edge
if v and w are in different Cc then

add (v, w) to T
merge the cc of v and w
nbrOfCc--

end if
end while

ToDo list:
- How to implement Cc? → later
- How to enumerate all edges? → use p-queue
- How to find cheapest edge?
- How to add to the MST? → use a list
- What is the complexity? need more detail

F3.kruskal 2 18

Refined “version two”: Pseudocode
kruskal(G: graph(V, E)) return set of edges

MFset cc // a Merge-Find set
Set mst = ∅ //the growing spanning tree
nodes v, w
int nbrOfCc = n // where n= nbr of nodes

1 insert all edges in a priority queue
2 while nbrOfCc > 1 loop
3 (v, w) = deletemin(edges)
4 ucomp = find(v, cc), vcomp = find(w, cc)
5 if ucomp ≠ vcomp then
6 merge(ucomp, vcomp, cc)
7 nbrOfCc = nbrOfCc - 1
8 add (v, w) to mst

end if
end while
return mst

end kruskal
If find ∈ O(logn), merge ∈ O(1), deletemin ∈ O(loge)
then altogether this is: O(eloge) = O(elogn)
since n-1 <= e <= n2.

F3.kruskal 2 19

Complexity
it is likely that n<e and that e<n2 (n-1<=e<=n2)
MFset/UFset: assume tree implementation =>
 - union/merge ∈ O(1)
 - find ∈ O(logn) (if the tree is balanced)
Deletemin: put all edges in a priority queue
(impl. with a heap).
 - deletemin, insert/add ∈ O(loge)
row what cost why
0 init n for init. of cc, 1 or e for pq
1 insert in pq eloge +
2 while e∗ each edge only once
3 deletemin (loge + see above
4 2*find 2loge + logn<=loge if n<e
5 if 1 + comparing numbers
6 merge 1 + se above
7 decrease 1 + trivially
8 insert/add 1) a list
n + e + eloge + e(loge+2loge+4) ∈ O(eloge)
this is also O(elogn) because e<n2

F3.kruskal 2 20

How to implement a MF-set? Try 1
A MFset contains a number of disjunctive sets
find(x) gives the set where x is
merge(A, B) is A = A∪B and A∩B = ∅
Example MF-set:
 k = {1, 2, 3, 4}, l = {5, 6}, m = {7}
Try 1: quick-find with an array

initialize: ∀x, cc(x) = x, ∈ O(n)
find(x): cc(x) ∈ O(1)
merge(a, b): ∈ O(n), n-1 merge give us O(n2)

for i in 1..nbrOfElements loop
if cc(i) == b then

cc(i) = a // result in a

F3.kruskal 2 21

find(x): ∈ O(1) => quick find
merge(a, b): ∈ O(n), => slow merge
so m merge give us O(m*n)

Huge problems are common
say 1010 edges connecting 109 nodes:
=> qf-sm takes more than 1019 operations
If we assume
109 operations per second.
109 words of main memory.
1019/109/60/60/24/365 = 317years
=> 300+ years of computer time!

And quadratic algorithms get worse with
faster computers!
• New computer say 10 times as fast.
• But, also has 10 times as much memory so
problem may be 10 times bigger.
• With quadratic algorithm, takes 100 times
as long!

F3.kruskal 2 22

Try 2: a list
Link all members in a list, keep track of the
size of the lists and always add the smaller
list to the bigger.
It's easy to add one list to another.
In Java you should not use “addAll” for this
since we also need to walk through the
shorter list and move all pointers from the
array to the shorter list to point to the
longer list.
find(x): cc(x) ∈ O(1)
merge(a, b): ∈ O(length of shortest list)
(It's the moving of pointers that are costly...)
Still to expensive.

F3.kruskal 2 23

Try 3: tree with pointers to parents
find(x) gives the set where x is; ∈ O(loge)
merge(A,B) is A = A∪B and A∩B = ∅; ∈ O(1)
Try 3: tree with pointers to parents
Ex:
K = {1,2,3,4},
L = {5,6},
M = {7}

find(x):
look up F(x) and follow the pointers to the
root which is O(logn) in wc:
Every merge at least doubles the size of the
smallest tree; the trees depth increase with
at most one, logn times so max depth of tree
is logn.
merge(A,B):
let the root of the smaller tree be a child of
the other. O(k)
We could also compact the tree in find.

F3.kruskal 2 24

Try 4: get rid of the “tree”
The trees can also be “stored” in the array!
Let F(i) represent the parent to i.
If i is a root then F(i)=0.
At start all nodes are in a set by themselves
index = set name
if F(i)=0
content = parent

Our example:
k = {1, 2, 3, 4},
l = {5, 6},
n = {7}
To keep track of the sizes we can replace all
zeroes with the negative size of the trees

find(x): ∈ O(logn) but usually smaller
follow cc(i) to a root, return the index
merge(A,B): ∈ O(1)
merge(1,5): cc(1) = cc(5)+cc(1), cc(5) = 1

F3.kruskal 2 25

Add path compression

after find(9)

F3.kruskal 2 26

find(x): ∈ O(k) - O(logn) => quick find
merge(a, b): ∈ O(1), => quick merge
so m merge and find give us O(m)
or in wc O(mlogn)

Again: Huge problems are common
say 1010 edges connecting 109 nodes:
=> now takes some 1010 operations
=> 1010/109 = 10 seconds of computer time!
If we assume
109 operations per second.
109 words of main memory.

• New computer say 10 times as fast.
• also has 10 times as much memory so
problem may be 10 times bigger.
• With linear algorithm, takes 10 times as
long!

F3.kruskal 2 27

Some steps to developing an usable algorithm:

Define the problem.
Find an (any) algorithm to solve it.
Prove it works.

Analyse the algorithm
Fast enough? (”enough” is relative)
If not, figure out why,
- Look at the complexity analysis.
- Better datastructures?
- Optimizations in the algorithm?
- Completely new algorithm?
i.e find a way to address the problem.
Iterate until satisfied.

F3.kruskal 2 28

Repetition of Priority queue
A set with the (only) operations
insert and deletemin
is called a priority queue.

Representations:
It can be represented in the same ways that
a set is represented except with a hash
table.

Usually we use:
• sorted or unsorted array/list O(1) - O(n)
• partially ordered leftbalanced (POL) tree
The advantage with this representation is
that both insert and deletemin will take
O(logn)

partially ordered
leftbalanced

(leftbalanced is usually called complete)

F3.kruskal 2 29

”Incompatible” operations is typical

The way you implement an ADT affect how
fast the operations can be performed.
This is very obvious with priority queues.

In a priority queue represented with a array
you can get fast insert or deletemin
depending on which algorithm you choose.

In a partially ordered leftbalanced (POL) tree
both insert and deletemin can have O(logn)
behaviour.

By selecting the implementation
(representation and algorithms) we can
influence performance and we can choose
what to optimise.

F3.kruskal 2 30

P-queue represented with a POL tree
Insert: assume that we have the following
POL tree and that we want to insert the new
element ”4”. We insert the element as far as
possible to the left on the lowest level. If it’s
full we start a new level.

If the new element has a lower priority than
it’s parent we exchange them. We repeat this
until the element is in the “right” place.
Complexity = O(logn)

F3.kruskal 2 31

Deletemin: We delete the smallest element.
The smallest element is in the root. Move the
rightmost leaf on the lowest level to the
former root position. Also O(logn).

This element is then moved down the tree to
it’s “right” position by exchanging it with it’s
child with lowest priority.

F3.kruskal 2 32

How do we represent POL trees?
Pointers: - many pointers since we want to
move both up and down the tree.
Heap: since we have a binary and
leftbalanced tree we can store it level by
level in a array.

A(1) contains the root.
If the child's exist we have:
Left child to A(i) is in A(2*i).
Right child to A(i) is in A(2*i+1)
Father to A(i) is in A(i div 2).
Ex: A(4)s children are in A(8) and A(9).
A(4)s father is in A(2)

F3.kruskal 2 33

Insert in the pq with a heap
PriorityQueue is represented with:
int last = 0;
array 1..max of <E> theData

Pseudocode:
insert(<E> x)

if last >= max then
throw Pqueue_full

else
last = last+1;
// theData(last) = x; // no don't add last
int j = last-1; // j
// create a empty slot for the new data
while j > 1 && x < theData(j/2)

theData(j) = theData (j/2));
j = j/2;

end loop
theData(j) = x; // now add the new one

end if
end insert

F3.kruskal 2 34

Clustering - organizing similar
object in groups by some distance

function
A large distance <=> less similar
Example of distance:

· the number of years since two species
diverged in the course of evolution

· the number of corresponding pixels at which
two images differ

Given a distance function d(pi, pj) on the
objects divide them into k groups s.t. objects
in the same group are close and objects in
different groups are far apart.

F3.kruskal 2 35

Clustering - formal problem
A k-clustering is a partition of the objects
into k non-empty sets C1, C2, C3, …, Ck

Assume that we
· have n objects p1, p2, p3, …, pn with a

distance function d(pi, pj) between each pair
of objects

· like to divide them into k groups for given k
· seek a k-clustering with maximum spacing

The spacing of a k-cluster is the minimum
distance between any pair of points in
different clusters.

Kruskals algorithm can be used!
Stop once we have obtained k connected
components i.e. just before Kruskal adds it’s
last k-1 edges or delete the k-1 most
expensive edges from the mst produced by
Kruskal.

F3.kruskal 2 36

