
F2  
Reading reference: chapter 2 + slides 

· Algorithm complexity 
· Big O and big Ω
· To calculate running time
· Analysis of recursive Algorithms

Next time:
Litterature: Chapter 4.5-4.7, slides
·Greedy algorithms
·Minimum spanning trees
·Minimum spanning tree property

(called cut-property in book)
· Kruskals algorithm
·Merge-Find sets (MF-sets)

(also called Union-Find sets)
· (Priority queues)
· Clustering

Complexity 1



How do we evaluate algorithms?
What does it mean to evaluate an algorithm?

Is it: “Does it work”?
Is it: to be able to compare two algorithms?

Is it: optimal (in speed, memory etc.)
Is it: How to make i better?

3 levels
1. It must be correct - it must work.
2. Must be easy to understand, code, 
    maintain    etc.
3. Should use computer resources well 
(speed, memory,...) e.g. should be “efficient”
The result of the evaluation of computer 
resources is called the algorithm's complexity.

Computing science “folklore”
- The fastest algorithm can frequently be replaced by one

that is almost as fast and much easier to understand.
- Make it work before you make it fast -

If a program doesn’t work it doesn’t matter how fast it
runs.
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Algorithm complexity
We will now look at how to mathematically 
analyse algorithms to determine their 
resource demands.

Definition: 
The complexity of an algorithm is the 
“cost” to use the algorithm to solve a 
problem. 
The cost can be measured in terms of
· executed instructions (the amount of work 

the algorithm does), 
· running time, 
·memory consumption 
· or something similar.

So complexity is a measure of the algorithms 
resource demands, it’s not about how hard the
algorithm is to understand

The most interesting resource seems to be 
running time but is that a good measure?
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The running time depends on many things:
1. The programmers skill and 
   the programming language.
2. The computers machine language + hardw.
3. The code that the compiler generates.
4. The size of the problem 
   (e.g. nbr of inputs).
5. The nature of input (sorted/unsorted).
6. Time complexity of the algorithm itself, 
    of the method chosen.
Items 1-6 is the base for “empirical” 
complexity, we can “measure” the time the 
algorithm takes on some input - the running 
time.

Drawbacks with empirical complexity:
- experiments can't cover all inputs
- you must implement the algorithm
- different algorithms has to be run on the 
same software/hardware/programmer
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–

Items 1-3 are (usually) not affected by the 
algorithm used and will only affect running 
time with a  constant factor that may vary 
with different languages, computers etc.
We like to ignore these constant factors and 
create a theoretical analytical framework...

Item 4-6 represents the theoretical 
complexity where we evaluate the algorithm 
“itself”.

+ see drawbacks with empirical complexity!

Drawbacks with a theoretical framework:
- constants can matter
- software/hardware/programmers can give 
you subtle problems for instance Strings in 
Java that is not “visible” here
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Elementary operations
We will measure the amount of work the 
algorithm does in terms of “elementary 
operations”.
Elementary operations are assumed to 
require one “cost”- unit e.g. it’s an operation 
whose complexity can be bounded by a 
constant.
Complexity is a relative concept, only 
interesting together with the corresponding 
elementary operation.

Problem Problem size Elementary op.

Find x in list Number of 
elements in list

Comparing x to 
list element

Multiplication of 
two matrices

Dimension of 
matrices

Multiplication of 
two numbers

Sort an array Number of 
elements

Comparing array 
elements or 
movement

Traverse a 
tree/graph

Number of nodes Follow a pointer
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Problem size influence complexity
- Logarithmic cost criteria

Since complexity depends on the size of the 
problem, we define complexity to be a 
function of problem size

Definition: 
Let T(n) denote the complexity for an 
algorithm that is applied to a problem of 
size n.
The size (n in T(n)) of a problem instance 
(I) is the number of (binary) bits used to 
represent the instance. 

So problem size is the length of the binary
description of the instance.

This is called Logarithmic cost criteria.
Ex: input x1, x2, x3, …, xk

size = log(x1) + log(x2) + ... + log(xk) 
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Uniform cost criteria:

Iff you assume that
· every computer instr. takes one time unit,
· every register is one storage unit
· and that a number always fits in a register
then you can use the number of inputs as 
problem size since the length of input (in bits)
will be a constant times the number of inputs.

Example: 
bigProblemToSolve(x1, x2, x3, …, xn) {...}
Inputs are x1, x2, x3, …, xn 
Then the size of the problem is
log(x1) + log(x2) + log(x3) + … + log(xn) 

this is ≤ n*log(max(xi)) 
and log(max(xi)) is a constant ≤ log(int.max)
so ≤ n * k
This is called Uniform cost criteria.
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Asymptotic order of growth rate and Big O
Small n is not interesting!
The growth rate of complexity e.g. what 
happens when n is big, or when we double or 
triple the size of input, that’s interesting.
We call this asymptotic growth rate and we 
need a way to express this mathematically:

”Big O”. (Ordo of f, “big O” of f, order of f)
Let, for a given function f, O(f) be the set of 
all functions t that are asymptotically 
bounded above by a constant multiple of f.
Formally: 
O f n ={t∣∃c0∃n00∀ nn0 tnc∗f n }
  where f , t :NR0+,c∈R+,n0∈N

or in words:
T(n) is O(f(n)) if there exists constants 
c>0 and n0≥0 so that for all n≥n0, we have 
T(n) ≤ c*f(n). 
We write T(n) ∈ O(f(n)).
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“Rules” of ordo notation
O(f)+O(g) = O(f + g) = O(max(f, g))
c ∗ O(f) = O(c ∗ f) = O(f)
f ∗ O(g) = O(f) ∗ O(g) = O(f ∗ g)
O(O(f)) = O(f)

Big Ω (Omega) 
Ordo notation gives us a way of talking about
upper bounds
“it takes no more time than...”
We also like to be able to talk about lower 
bounds, to be able to say that
“it takes at least this much time to...”

Let, for a given function f, Ω(f) be the set of
all functions t that are asymptotically 
bounded below by a constant multiple of f.

Ω f n={t∣∃c0∃n00∀ nn0t n c∗f n }
                                               ↑
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Nature of input influence
complexity

Complexity also depends on the nature of the 
input. 
(for instance: sorting n numbers can be much 
quicker if they are (almost) sorted already)

Therefore we use the worst case as a 
measure of complexity

Definition: 
Let T(n) be the maximum cost over all n to 
apply the algorithm on a problem of size n.

This gives us an upper bound of the amount of
work the algorithm performs, it can never 
take more time.
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When we say that an algorithm takes 
time ∈ O(n2) we mean that it takes 
no more time than a constant times n2, 
for large enough n, to solve the problem in 
worst case.

When we say that an algorithm takes 
time ∈ Ω(n2) we mean that it takes 
at least a constant times n2, 
for large enough n, to solve the problem in 
worst case.

In both cases this does not mean that it 
always will take that much time, only that 
there are at least one instance for which it 
does.
Example:
Looking for x in a unsorted list with n 
elements takes O(n) and Ω(n) time in the 
worst case but if x is first in the list it takes
O(1) time.
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Functions of more than one variable
What if we have several parameters T(n, m)?
(for instance matrix indices as parameters)
We can generalize:

But more often: try to express complexity as 
a one parameter function for instance by 
adding or multiplying the parameters:
f(n') = f(n*m) or f(n') = f(n+m)

Conditional notation:
O(f(n) | P(n)) where P(n) is a predicate.
O(n2 | n odd)  valid only for odd n
O(nlogn | n=2k)  n must be power of 2.
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Calculating complexity
1. Only executable statements “costs”.
2. Simple statements like assignment, read / 
write of simple variables and so on take O(k).
3. For a sequence of statements the cost is 
the sum of the individual costs.
4. For decisions like “if” and “case” 
statements you add the cost for the decision 
(usually constant) plus the cost of the most 
expensive alternative.

if n<0 then print n;
else print an array 1..n

5. Loops with constant step: the sum over all 
turns of the time to evaluate the condition 
plus the body. (i.e. the number of turns times 
the largest time of the body over all turns)....
6. Multiplicative loops …. see --->
7. Subprograms are analysed according to the
rules above. Recursive algorithms are a bit 
more difficult. We must express T(n) as a 
recursion equation .... 
Solving them can be a bit tricky.
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Examples loops
Sum up the numbers 1 to n, elem.op.= 
 aritm. operations, reading a variable is free
pedantic analysis:
1 int sum = 0; (1 op)
2 for ( int i=1; (1 op)
3 i<=n; (1 op every turn)
4 i++ ){ (2 op every turn)
5 sum = sum + i; (2 op every turn)

}

Gives us the complexity function:
Row

T(n) = 1 + 1
       1 + 2
       (n+1)*1+ 3   (nbr of turns)*1
       n*2 4
       n*2 5

     = 3 + 5*n  = an exact solution ∈ O(n)
mathematically correct estimate:

2∑
i=1

n

5=25∑
i=1

n

1=25n∈On 

rough estimate: n turns ∗ cost of body = n
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Example:
for i = 0..n loop

for j = 1..n loop
something O(1)

end loop
end loop

mathematically correct:
(the sum over all turns of the time to 
evaluate the condition plus the body)

Tn=∑
i=0

n

∑
j=1

n

O1

(known sums: ∑
i=1

n

1=11...1=n∈O n 

                 ∑
i=1

n

i=12...n=
n n1

2
∈On2 )

rough estimate: 
i.e. the number of turns times the largest 
time of the body over all turns
T(n) = n∗n∗1
or T(n) = (n+1)∗n∗1
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Multiplicative loops 
with multiplication/division with a constant 
like

control = 1;
while control <= n loop

something O(1)
control = 2 * control;

end loop;

After k iterations we have
control = 2k ⇒k = 2log(control) 
since k is the number of iterations 
and  control = n at the end of the loop 
then k = log(n)

Observe that the base of the logarithm 
doesn’t matter since the logarithm of a 
number in one base is equal to a constant 
times the logarithm in another base so
O(alogn) = O(blogn).
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Usual Ordo functions
Polynomial complexity (or better):

(Polynomial complexity is anything 
smaller than or equal to a polynom)

O(1), O(k): constant complexity
O(ylog n): logarithmic complexity
O(n): linear complexity
O(nlogn): lin-log complexity
O(n2): quadratic complexity
O(n3): cubic complexity
O(n4):
O(n5):

Worse:
O(2n): exponential complexity
O(n!) factorial complexity

And combinations of these like
 O(n∗ 2log n),  O(n3∗2n), ...

Complexity 18



Recursive functions
The faculty function is defined as

n!= {1 if n=1
n n−1! otherwise

int fac(int n) 
if n <= 1 then

return 1
else

return n*fac(n-1)
end if

end fac

If the call to fac(n) take T(n), then the call 
to
fac(n-1) should take T(n-1). So we get

Tn  = {c1 if n=1
Tn−1c2 n1

whose solution is O(n).
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Mergesort is a famous sorting algorithm
array mergesort (array v; int n)

// v is an array of length n
if n = 1 then

return v
else

split v in two halfs v1 och v2,
with length n/2

return merge(mergesort(v1, n/2),
mergesort(v2, n/2))

end if
end mergesort

Merge takes two sorted arrays and merges 
these with one another to a sorted list. If 
T(n) is the wc time and we assume n is a 
power of 2, we get:

T(n)= {c1 if n=1
2T (n/2)+c2n if n>1

The first “2” is the number of subsolutions 
and n/2 is the size of the subsolutions 
c2n is the test to discover that n≥1, (O(1)), to 
break the list in two parts (O(1)) and to 
merge them (O(n)). The solution is O(nlogn)
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Solving recursion equations
means that we try to express them in closed 
form, i.e without T(...) term on the right hand
side.
· Repeated substitution - expand the identity

until all terms on the right hand side only 
contains T(c) which is a constant.

·Guess a solution f(n) and prove it to be 
correct, that T(n)≤f(n), with induction. 
You need experience with guessing!

· Simple transformations of range or domain 
(for example Z-transform)

·Generating functions 
(special case of transforming the domain)

· Special methods like
! Direct summation.
! Cancellation of terms.

·Methods for solving difference and 
differential equation

· Tables and books
·Give up...
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Strategy for complexity
calculations

1) Set up the requirements, principally which
elementary operations (EO) you use 
i.e. what costs are you counting.
(and possibly what you are NOT counting)

2) Set up the formula for the complexity 
Do that rather exactly (mathematically 
correct) and motivate carefully what you do.
Example: in the sum 

3+∑
i=1

n

5

you must motivate where 3, i=1, n and 5 came 
from and why a sum is appropriate, referring 
to the pseudocode/algorithm.
This can be done by having row numbers in 
the pseudocode and writing like
row 1-3 does one EO each
row 4 is a loop that start with i=1 since ….

Complexity 22



3) Solve the formula 
Think about what the result is going to be 
used for:

  - If you only want an O(.): 
simplify as needed if it makes solving the 
formula easier. (But don't do it in a routine-
like fashion)
And think about what you do, example: 
a single loop with a O(n) body costs as much 
as a double loop with constant body.

  - But if you need to compare different 
algorithms with the same O(.) you need to 
solve more precisely.
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Always motivate what you do. Math can be 
motivated like this: 

“...” is the formula that you are working with
.... = {divide everywhere with 4}
.... = {use formula for geometric sum}
.... = and so on

Trivial things need not be motivated but be 
over-explicit rather than the opposite. 

With long formulas with many subexpressions 
(like double sums for instance) you can solve 
the subexpressions separately so in

3+∑
i=1

n

∑
i=0

n−1

5

you can solve the inner sum before or after 
this calculation and just insert the result 
here
…. = {solution of inner sum, see below}
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