Algorithms. Lecture Notes 12 and 13

Bipartite Matching

Here is one of the simplest but also most important examples of a reduction of
another graph problem to Maximum Flow.

A bipartite graph is a graph G = (X,Y, E) where the node set is split
into two sets X,Y, and edges exist only between X and Y. (These are exactly
the 2-colorable graphs.) A matching is a set of pairwise node-disjoint edges.
The Bipartite Matching problem asks to find a matching of maximum size in a
bipartite graph. Typical applications are job assignment problems: Nodes in X
are jobs to be done, nodes in Y are workers or machines, and an edge means
that the worker/machine is able to do the job. A matching is then a set of jobs
that can be executed in parallel.

Bipartite Matching is reduced to Maximum Flow as follows: Add a source
s and a sink ¢, insert edges from s to all nodes in X, and from all nodes in Y
to t, orient the edges of E from X to Y, and set all edge capacities 1. Then
the maximum matchings correspond exactly to the maximum flows with integer
values (0 or 1) on the edges. (This equivalence needs a proof, however this is
simple enough.) The time to solve the problem is therefore O(mC) = O(mn).

One can also find maximum matchings in general graphs is polynomial time,
but this is much more tricky.

Problem: Interval Partitioning

Given: a set of n intervals [s;, fi], ¢ = 1,...,n, on the real axis.

Goal: Partition the set of intervals into the smallest possible number d of
subsets X1, X2, X3, ..., Xy, each constisting of pairwise disjoint intervals.

Motivations:

Thay are similar to Interval Scheduling. The difference is that several
“copies” of the resource are available, and all requests shall be served, using
the smallest number of copies.



A Greedy Algorithm for Interval Partitioning

Let the subsets X;, X5, X3, ... initially be empty. We sort the intervals such
that s; < ... < s,, and consider them in this order. We always put the current
interval x into the subset X; with the smallest possible index %, such that x does
not intersect any other interval in X;.

Optimality may be proved again by an exchange argument, but here we
illustrate another nice proof technique: We give a simple bound for the value
d to be optimized, and then we show that our solution achieves this bound,
hence it is optimal. Specifically, let d be the maximum number of intervals
that contain the same point. Since d such intervals must be put into d distinct
subsets, any solution needs at least d subsets. Our greedy algorithm uses only d
subsets: Whenever a new interval x is considered, at most d — 1 earlier intervals
can intersect x, because these intervals must contain the start point of z. Hence
we can always put x is some of the first d subsets.

Space-Efficient Sequence Comparison

This section deals with an algorithm where dynamic programming and divide-
and-conquer work nicely together. We also address the space complexity.

Suppose m < n. We have seen an algorithm that aligns two sequences
A=ay...an, and B = by...by, in O(nm) time. Unfortunately, it needs also
O(nm) space, which can be prohibitive for applications in molecular biology
where n, m are huge numbers. We may implement the dynamic programming
algorithm so that it needs only O(m) space: For computing the values OPT (i, j)
we need only the previous row or column of the array of OPT values, but we
can forget all earlier values. But this gives us only the score OPT (n,m) of a
best alignment. If we are supposed to deliver an optimal alignment as well, we
need (potentially) all OPT(i, j) for the backtracing procedure, since we do not
know in advance the optimal “path” through the array. We could maintain the
best alignments of prefixes along with the OPT (i, j), but then we are back to
an O(nm) space algorithm.

The striking idea to overcome the space problem is to determine one entry
(or “node”) in the middle of the optimal path. We get it from the scores, which
can be computed in small space by dynamic programming. Once we know one
node on the optimal path, we can split our problem instance in two indepen-
dent instances and solve them recursively, one after another. Thus, everything
happens in small memory space, while the divide-and-conquer structure ensures
that we do not lose too much time. Below we describe the algorithm in more
detail.

Let be k ~ m/2. We compute the scores (edit distanes) OPT(j, k) for all j
by dynamic programming, in O(nm) time and O(m) space. The same is done
for the reversed sequences a, ...a; and b,,...b;. The half sequence by ...by



must be aligned to a; . ..a;, for some yet unknown j, and the other half of B to
the rest of A. Then, the two optimal alignments are completely independent.
In order to find the optimal cut-off point j, we can simply add the scores of
these two alignments and pick j where the sum is minimized. We come from
the left and from the right, the edit distance does not change if sequences are
reversed. Clearly, the minimum sum is found in O(n) time and space. Finally
we divide B at position k, and A at that position j we have just determined,
and we make two recursive calls.

We never need more than O(n) space at the same time. The time complexity
is given by the recurrence T'(n,m) = 2T (n,m/2) + O(nm), since divide-and-
conquer is done on sequence B of length m, and time O(nm) is still needed to
compute the scores. Note that the recurrence has two variables. Without the
argument n and without factor n in the last termn, we would have the standard
recurrence T'(m) = 2T (m/2) + O(m) with solution T(m) = O(mlogm). Our n
can be treated as a “constant” factor that appears in every recursion level, thus
we can immediately conclude that T'(n, m) = O(mnlogm).

We have sketched an alignment algorithm that needs only a log m factor more
time than the basic dynamic programming algorithm but has the important
advantage to work in small space. This is a good deal. Actually, a somewhat
more careful analysis yields an O(nm) time and O(n) space bound, see section
6.7 of the course book.

Problem: Closest Points

Given: a set of n points in the plane (given as Cartesian coordinates (z;,v;)).
Goal: Find a pair of points with minimum distance.

Motivations:

Some approaches to hierarchical clustering of data take the two closest data
points and combine them to a cluster by replacing these two points by their
midpoint, and this step is repeated until one cluster remains.

Divide-and-Conquer in Geometry: Closest Points

Fast geometric calculations are needed in computer graphics, computer-aided
design, robotics, planning (transport optimization, facility location), chemistry
(modelling molecules and their dynamics), for extracting information from ge-
ographic databases, etc. The amount of data can be huge (e.g., elements of a
picture), such that efficient algorithms make a difference.

Divide-and-conquer is suitable for various geometric problems, because in-
stances can be divided in a natural way. (However, the conquer phase is usually



less trivial). To give at least an impression, we discuss another geometric prob-
lem example: finding a pair of closest points among n given points in the plane.

An obvious algorithm would compute all pairwise distances and determine
the minimum in O(n?) time. Instead, we aim at a divide-and-conquer algorithm
satisfying the recurrence T'(n) = 27(n/2) + O(n), which would have the time
complexity T'(n) = O(nlogn).

It is natural to divide the set by a straight line. To make the calculation
details simple, we first sort the points by their xz-coordinates, and then halve
the set by a vertical separator line. More formally, we take the median z of all
z-values and put all points with coordinate x < z and x > z, respectively, in
the two sets. Recall that sorting takes O(nlogn) time, which does not destroy
the desired time bound. Wouldn’t it be enough to compute the median in O(n)
time, without sorting? Yes, it is enough for the first step, but we will recursively
split the point set further, on the lower recursion levels. Sorting the points once
in the beginning is simpler and cheaper (in terms of the hidden constant factors)
than median computations on every recursion level.

Then, of course, we compute the closest pairs in both subsets recursively.
Let d be the minimum of the two minimum distances. The tricky part is to
combine the partial solutions. The global solution could be the best of the two
closest pairs from the two subsets, but there could also exist a pair of points with
distance smaller than d, having one point in each subset. The candidates for
such pairs of points are in a stripe of breadth d on both sides of the separating
line. Moreover, each point has only constantly many partners (at distance
smaller than d) on the other side, hence O(n) such pairs of close points must be
considered. These pairs can be identified in O(n) time, if all points are already
sorted by their y-coordinates as well. With careful implementation, all steps in
the conquer phase run in O(n) time as desired.



