
Algorithms. Lecture Notes 11

Fast Construction of a Topological Order

A possible O(m) time algorithm to construct a topologocial order of a given

DAG uses DFS and is based on the following equivalence: G is a DAG if and

only if directed DFS, with an arbitrary start node, does not yield any back

edges. To see the “only if” part, note that a back edge (u, v) together with the

tree edges on the path from v to u form a cycle. The proof of the “if” direction

gives a method to construct a topological order: Run DFS again, but with

two modifications: Ignore all edges that are not in the DFS tree, and call the

children of each node in reverse order (i.e., compared to the first run). Append

each node to the result, as soon as it is marked as explored. Since there are no

back edges, and all cross edges go “to the left”, it is not hard to see that we

actually get a topological order. (As you notice, this algorithm is conceptually

a bit more complicated than the one proposed above.)

However, there is a simpler algorithm, based on the equivalence we proved in

the previous section. Remember that a topological order starts with an arbitrary

node without incoming edges. However, for an efficient implementation we have

to be careful: How do we find, in every step, a node without incoming edges

in the remaining graph? Naive search from scratch is unnecessarily slow. But

some good ideas are straightforwardly to obtain: By removing parts of the

graph, the in-degree of every node can only decrease. Furthermore, recall that

an arbitrary node with in-degree 0 can be chosen as the next node. Together

this suggests counting and queuing: In the beginning, count the incoming edges

for every node. This is done in O(m) time. Put all nodes with in-degree 0 in a

queue. In every step, take the next node u from queue, and subtract 1 from the

in-degrees of all v with (u, v) ∈ E. Since this is done only once for every edge

(u, v), updating the in-degrees costs O(m) time in total, if G is represented by

adjacency lists. Altogether, we can recognize DAGs and construct a topological

order in O(m) time.

1



Problem: Longest Paths

Given: an undirected or directed graph G = (V,E), the lengths l(u, v) of all

edges (u, v) ∈ E, and a start (“source”) node s ∈ V .

Goal: For all nodes x ∈ V , compute a (directed) path from s to x with maxi-

mum length, but such that no node appears repeatedly on the path.

The Shortest Paths problem with a source s is similarly defined.

Motivations:

Finding longest paths is not a silly problem. In particular, it makes much

sense on DAGs. For example, if the DAG is the plan of a project with paralleliz-

able tasks modelled by the edges, and the edge lengths are execution times, then

the longest path in the graph gives the necessary execution time (makespan) for

the whole project. It is sometimes called the critical path.

Shortest and Longest Paths in DAGs

Shortest paths in directed graphs with unit edge lengths can be computed by

BFS, as we have seen. An extension of this shortest-path algorithm to directed

graphs with arbitrary edge lengths is Dijkstra’s algorithm that we do not present

here. (It may be known from data structure courses, otherwise we refer to

section 4.4 of the textbook.)

The Shortest Paths problem is much easier in DAGs. We can take advantage

of a topological order, constructed in O(m) time. Since paths must go strictly

from left to right, we may suppose that the source s is the first node in the

topological order. Assume that we already know the values d(s, x) for the first

k−1 nodes x in the topological order. (These are not necessarily the k−1 nodes

closest to s. Let z denote the kth node. Then we have d(s, z) = min d(s, x) +

l(x, z), where the minimum is taken for all x to the left of z. Correctness is

evident, since the predecessor of z must be one of these nodes x. This dynamic

programming algorithm needs only O(m) time, as we look at every edge only

once.

Next, we want to know the longest paths from s to all nodes in a DAG.

Amazingly we can apply the same algorithm, replacing min with max. However:

Think about the question why this is correct! (For general directed graphs we

cannot simply take Dijkstra’s algorithm and replace min with max? This would

not yield the longest paths.)

We remark that the dynamic programming algorithms for many other prob-

lems (e.g. String Editing) can be interpreted as shortest- or longest-paths cal-

culations in DAGs. More formally, we can reduce those problems to Shortest

2



(or Longest) Paths in DAGs. Nevertheless it is still advantageous to use special-

purpose algorithms for those problems, because their DAGs have some regular

structures, such that memoizing optimal values in arrays is in practice faster

than unnecessarily dealing with data structires for (arbitrary) DAGs.

Network Flow – Basics

Let G = (V,E) be a directed graph where every edge e has an integer ca-

pacity ce > 0. Two special nodes s, t ∈ V are called source and sink, all

other nodes are called internal. We suppose that no edge enters s or leaves

t. A flow is a function f on the edges such that 0 ≤ f(e) ≤ ce holds for

all edges e (capacity constraints), and f+(v) = f−(v) holds for all internal

nodes v (conservation constraints), where we define f−(v) :=
∑

e=(u,v)∈E f(e)

and f+(v) :=
∑

e=(v,u)∈E f(e). (As a menominic aid: f−(v) is consumed by

node v, and f+(v) is generated by node v.) The value of the flow f is defined

as val(f) := f+(s). The Maximum Flow problem is to compute a flow with

maximum value.

For any flow f in G (not necessarily maximum), we define the residual

graph Gf as follows. Gf has the same nodes as G. For every edge e of G with

f(e) < ce, Gf has the same edge with capacity ce − f(e), called a forward

edge. The difference is obviously the remaining capacity available on e. For

every edge e of G with f(e) > 0, Gf has the opposite edge with capacity f(e),

called a backward edge. By virtue of backward edges we can “undo” any

amount of flow up to f(e) on e by sending it back in the opposite direction.

The residual capacity is defined as ce − f(e) on forward edges and f(e) on

backward edges

Now let P be any simple directed s− t path in Gf , and let b be the smallest

residual capacity of all edges in P . For every forward edge e in P , we may

increase f(e) in G by b, and for every backward edge e in P , we may decrease

f(e) in G by b. It is not hard to check that the resulting function f ′ on the

edges is still a flow in G. We call f ′ an augmented flow, obtained by these

changes. Note that val(f ′) = val(f) + b > val(f).

Now the basic Ford-Fulkerson algorithm works as follows: Initially let f := 0.

As long as a directed s− t path in Gf exists, augment the flow f (as described

above).

To prove that Ford-Fulkerson outputs a maximum flow, we must show: If

no s− t path in Gf exists, then f is a maximum flow.

The proof is done via another concept of independent interest: An s− t cut

in G = (V,E) is a partition of V into sets A,B with s ∈ A, t ∈ B. The capacity

of a cut is defined as c(A,B) :=
∑

e=(u,v):u∈A,v∈B ce.

3



For subsets S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v/∈S f(e) and f−(S) :=∑
e=(u,v):u/∈S,v∈S f(e). Remember that val(f) = f+(s) − f−(s) by definition.

(Actually we have f−(s) = 0 if no edge goes into s.) We can generalize this

equation to any cut: val(f) =
∑

u∈A(f+(u)− f−(u)), which follows easily from

the conservation constraints. When we rewrite the last expression for val(f) as

a sum of flows on edges, then, for edges e with both nodes in A, terms +f(e)

and −f(e) cancel out in the sum. It remains val(f) = f+(A)−f−(A). It follows

val(f) ≤ f+(A) =
∑

e=(u,v):u∈A,v/∈A f(e) ≤
∑

e=(u,v):u∈A,v/∈A ce = c(A,B). In

words: The flow value val(f) is bounded by the capacity of any cut (which is

also intuitive).

Next we show that, for the flow f returned by Ford-Fulkerson, there exists

a cut with val(f) = c(A,B). This implies that the algorithm in fact computes

a maximum flow.

Clearly, when the Ford-Fulkerson algorithm stops, no directed s − t path

exists in Gf . Now we specify a cut as desired: Let A be the set of nodes v such

that some directed s− v path is in Gf , and B = V \A. Since s ∈ A and t ∈ B,

this is actually a cut. For every edge (u, v) with u ∈ A, v ∈ B we have f(e) = ce
(or v should be in A). For every edge (u, v) with u ∈ B, v ∈ A we have f(e) = 0

(or u should be in A because of the backward edge (v, u) in Gf ). Altogether we

obtain val(f) = f+(A)− f−(A) = f+(A) = c(A,B). In words: The flow value

val(f) equals the capacity of a minimum cut (which is still intuitive).

The last statement is the famous Max-Flow Min-Cut Theorem.

However it should be noticed that the Ford-Fulkerson algorithm in its basic

form may need O(mC) time, where C is the sum of capacities of the edges at

the source: An augmenting path can be found by DFS, val(f) increases by at

least 1 in every iteration, and val(f) ≤ C. This time bound is not polynomial

in the input length. By a careful choice of augmenting paths (e.g., taking the

shortest path each time) one can make the algorithm polynomial, but we cannot

give this analysis here.

4


