
Algorithms. Lecture Notes 10

Graph Traversals

Graph traversals are techniques to visit all nodes in a graph in a fast and
systematic way. The provide a basis for several efficient graph algorithms. We
consider directed graphs G = (V,E) and denote a directed edge from u to v by
(u, v).

Perhaps the simplest traversal strategy is Breadth-First-Search (BFS).
(Don’t forget the “d” in “breadth” ...) It starts in one node s which we put in a
queue and mark as discovered. In every step, BFS takes the next node u from
queue and visits all unmarked nodes v such that (u, v) ∈ E. Every such v is
put in the queue and marked. BFS stops as soon as the queue is empty.

We study some properties of BFS. BFS partitions the set of nodes into layers
Li, i ≥ 0, inductively defined as follows. L0 contains only the start node s, and
Li+1 contains all nodes v such that: an edge (u, v) ∈ E for some u ∈ Li exists,
and v is not already in an earlier layer. It is easy to see that BFS, implemented
with a queue, processes the nodes exactly layer by layer. More importantly, the
layers provide some useful structure: Edges (u, v), with u ∈ Li, v ∈ Lj go at
most to the next layer, that is, j ≤ i + 1. It follows that Li contains exactly
the nodes with (directed) distance i from s, in order words, the nodes reachable
from s on a directed path of i (but not fewer than i) edges. Hence BFS as such
includes an algorithm for the Shortest Paths problem, provided that all edges
have unit length.

BFS also gives rise to a directed tree which contains all discovered nodes
and a certain subset of the edges from E: Whenever a node v is discovered the
first time, via the edge (u, v), we insert this edge in the tree. This yields a tree
rooted at s, since every node except s has exactly one predecessor. We refer to
it as the BFS tree. All edges in the BFS tree go from a layer to the next layer.

To analyze the time for BFS, note that every edge is considered only once.
The crucial step is to determine the nodes v with (u, v) ∈ E, for a given u. The
time for this operation depends on the way the graph is represented. When
adjacency lists are used, we simply need to traverse the list for u, thus we spend
only constant time on every edge. We conclude that BFS needs O(m) time.
If an adjacency matrix is used, we need O(n2) time which is in general worse.
Namely, for the node u considered in each step we have to check all matrix
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entries in u’s row, even in the case that almost all of them are 0.
The other standard graph traversal strategy is Depth-First-Search (DFS).

It starts in a node s and follows a directed path of yet unexplored nodes, as
long as possible. When it reaches a dead end (where all nodes adjacent to the
current one are already explored), it goes one step back on the path, looks for
another unexplored successor node, and so on.

The most compact formulation is a recursive procedure DFS(u) with start
node u as input parameter (the main program is to call DFS(s)): Mark u as
explored, and call DFS(v) for all unmarked v with (u, v) ∈ E. Since each
recursive call is done only after termination of the previous call, this gives the
desired depth-first behaviour. DFS can also be written as an iterative program,
but then the stack but must be implemented explicitly.

DFS exhibits some similarities to BFS. The time for DFS is O(m) when
adjacency lists are used to collect all successors of a node. A DFS tree can be
defined as follows: Edge (u, v) belongs to the DFS tree if DFS(u) calls DFS(v).
Such edges (u, v) are said to be tree edges. Indeeed, they form a tree, since
v becomes the input parameter of a recursive call only once, and then v gets
marked. Differences to BFS concern the positions of edges from E which are
not in the DFS tree:

In undirected graphs, such edges can only go from a node to an ancestor
node in the DFS tree. This follows easily from the rules of DFS. We call them
back edges. Furthermore, there exist no cross edges, that is, edges joining
nodes from different paths of the DFS tree. In directed graphs this issue is
somewhat more complicated. Directed edges which are not in the DFS tree can
be divided into three types: forward edges going from a node to a descendant
node, back edges going from a node to an ancestor node, and cross edges
going from a node to another node on an “earlier” directed path of the DFS
tree. – These structural properties are useful in several graph algorithms based
on DFS.

Problem: Undirected Graph Connectivity

An undirected graph is connected if there exists a path between any two nodes.
The connected components are the maximal connected subgraphs.

Given: an undirected graph G = (V,E).

Goal: Decide whether G is connected. If not, compute the connected compo-
nents.
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Problem: Strong Connectivity in Directed Graphs

A directed graph is strongly connected if there exists a directed path from
every node to every node. The strongly connected components are the
maximal strongly connected subgraphs.

Given: a directed graph G = (V,E).

Goal: Decide whether G is strongly connected. If not, compute the strongly
connected components.

Motivations:
If the graph models states of a system and possible transitions between them,

strong connectivity means it is always possible to recover every state, i.e., the
system has no irreversible moves. The street map of a city with one-way streets
should be strongly connected as well, or the traffic planners made a mistake.

Some Applications of BFS and DFS: Connectivity

Testing connectivity of a graph might be misjudged as a very simple problem,
but without some systematic strategy we would aimlessly walk around in the
labyrinth of the graph and use much more time than necessary. Graph traversal
solves several connectivity problems efficiently:

BFS starting in node s in a graph G reaches exactly those nodes reachable
from s on directed paths. The same is true for DFS. If the search reaches some
u, then all v with (u, v) ∈ E will be reached, too. From this fact, the statements
follow by induction.

In particular, if G is undirected, the traversal explores exactly the connected
component of G which contains s. This gives an O(m) algorithm to test whether
an undirected graph G is connected: Run either BFS or DFS, with an arbitrary
start node. G is connected if and only if all nodes are reached. We can also
determine the connected components of G in O(m + n) time: If the search has
aborted without finding all nodes, restart the search in a yet unmarked node,
and so on.

Connectivity is more intricate in directed graphs. Still, strong connectivity
is easy to check in O(m) time: Run BFS (or DFS) with an arbitrary start node
s, once on the given directed graph and once on the reversed graph where all
edges (u, v) are replaced with (v, u). Both searches must reach all nodes. This
condition is sufficient, since one can get from every node to every node via
s. If the graph is not strongly connected, this simple algorithm determines
the strongly connected component which contains s: It is the set of nodes
reached in both the given graph and the reversed graph. One can obviously
extend this algorithm, in order to partition the graph into its strongly connected
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components. Hovewer, we may need O(nm) time: In the worst case the graph
may have many small strongly connected components, but we may need O(m)
time to determine each one in this way. It is possible to compute all strongly
connected components in O(m) time by some sophisticated use of DFS, but we
have to skip this theme.

A nice use of the DFS properties in undirected graphs is the recognition of
articulation points. An articulation point is a node whose deletion discon-
nects the graph. We can state: A node v is an articulation point if and only if
the DFS tree of DFS(v) has more than one child. This follow from the absence
of cross edges in undirected graphs.

Problem: Graph Coloring

Given a set of k colors, a k-coloring of a graph assigns a color to each vertex, so
that adjacent vertices get different colors. A graph is k-colorable if it admits
a k-coloring. The 2-colorable graphs are exactly the bipartite graphs.
Given: an undirected graph G = (V,E) and an integer k.

Goal: Construct some k-coloring of G, or report that G is not k-colorable.

Motivations:
Imagine that a person who is not exactly an expert in botany gets a set of

plants, and he is told that they belong to two different species. He does not
always see whether two plants belong to the same species or not, however, some
pairs of plants are obviously different. Is it possible for him to divide the set
correctly and efficiently? This can be translated into the 2-coloring problem:
Every species (class, category, etc.) is represented by a “color”. The plants (or
whatever objects) are nodes of a graph G = (V,E), where any two nodes that
are known to belong to different classes are joined by an edge. The 2-colorable
graphs are also called bipartite graphs.

Various problems dealing with packing, frequency assignment, job assign-
ment, scheduling, partitioning, etc., can be considered as Graph Coloring, where
the graph models pairwise conflicts. Note that Interval Partitioning problem is
a special case of Graph Coloring, with the goal to minimize the number of col-
ors: Intervals are nodes, two nodes are adjacent if the corresponding intervals
overlap, and the “colors” are copies of the resource.

One Graph and Two Colors

We conclude with a simple application of BFS: The 2-coloring problem is solv-
able in O(m) time. The key observation is: If a node gets one color, then all
adjacent nodes must get the other color, and so on. BFS merely serves as a
framework to organize the coloring efficiently. Now in detail: We compute the
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BFS tree and the layers. Then, all nodes in layers Li, i even, get one color, and
all nodes in layers Li, i odd, get the other color. Since each node in Li+1 is
joined to some node in Li via an edge of the BFS tree, essentially only one valid
2-coloring can exist in each connected component. (We can only swap the two
colors.)

This algorithm does not work for k > 2 colors, because the color of a node
does no longer determine the color of all neigbored nodes. We have the choice
between different colors, and it is not clear how we could safely avoid later
coloring conflicts.

Actually, k-coloring is NP-complete for every k ≥ 3. This can be shown by
a reduction from 3SAT being somewhat similar to the reduction from 3SAT to
Vertex Cover.

Problem: Detecting Directed Cycles

A directed cycle in a directed graph is a cycle that can be traversed respecting
the orientation of the edges: v1, v2, v3, . . . , vn, v1, where every (vi, vi+1) and
(vn, v1) is a directed edge. A directed acyclic graph (DAG) is a directed graph
without directed cycles. DAGs should not be confused with trees which are
connected graphs without any cycles (which are in general undirected).

Given: a directed graph G = (V,E).

Goal: Find a directed cycle in G, or report that G is a DAG.

Motivations:
Directed cycles are undesirable in plans of tasks where directed edges (u, v)

model pairwise precedence relations (task u must be done before task v). These
tasks can be calculations in a program or logic circuit, jobs in a project, steps
in a manufacturing process, etc. In such models, directed cycles indicate errors
in the design.

Some systems in Artificial Intelligence, so-called partial order planners, au-
tomatically create plans to achieve some goal, given a formal description of the
goal and of available actions. Part of the construction algorithms are tests for
directed cycles. If such cycles are detected in a plan, some actions must be re-
moved, and the corresponding partial goals must be realized in a different way,
avoiding new cycles.

Problem: Topological Order

A topological order of a directed graph G = (V,E) is an order of all nodes of
V so that all directed edges go to the right. In other words, for every directed
edge (u, v), node u appears earlier than node v in the order.
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Given: a directed graph G = (V,E).

Goal: Construct a topological order of G, or report that G does not admit a
topological order.

Motivations:
The nodes are jobs with pairwise dependency constraints, as above. Any

topological order is a possible order of executing these jobs without violating
the precedence constraints.

Directed Acyclic Graphs (DAGs) and Topological
Ordering

We continue with fast algorithms that detect directed cycles or construct a
topological order (if existing) in a directed graph G.

Looking at the specifications of these problems, perhaps it is not hard to
guess that G is a DAG if and only if G allows a topological order. The “if”
direction is obvious: If all edges go in the same direction, one can never close
a directed cycle. The “only if” direction is more interesting, and the proof is
constructive in the sense that it also shows how to obtain a topological order,
provided that G is a DAG. The proof is done by induction on the number of
nodes.

Observe that the first node v in a topological ordering must not have incom-
ing edges (u, v). Conversely, any node v without incoming edges can be put at
the first position of a topological order. Here comes the inductive argument:
Remove v and all incident edges from G. The remaining graph is still a DAG.
(No new directed cycles can be created by removing parts of the graph.) Hence,
G without v has a topological order, and by setting v in front of this topological
order, we get one for the entire G.

The resulting algorithm has a very simple structure: Put some node v with-
out incoming edges at the next position of the topological order, remove v and
all incident edges, and so on.

This algorithm is obviously correct if it goes through. But how do we know
that there always exists such a node v to continue? Assume by way of contra-
diction that every node has an incoming edge. Then we can traverse a path of
such edges in opposite direction, but since G is finite, we must sometimes meet
a node again. But G has no directed cycle by assumption.

A remarkable detail is that we can always take an arbitrary node v without
incoming edges. We can never miss a topological order by an unlucky choice
of v in some step. The proof ensures this. In a sense, we can consider this
algorithm a greedy algorithm, even though there is nothing to optimize.
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