
Algorithms -
the peak of computing science

Peter Damaschke
ptr at chalmers.se

and
Erland Holmström

erland at chalmers.se

Autumn 2017

CTH TIN093 / GU DIT602

Course home page:
www.cse.chalmers.se/edu/course/tin093

F1 intro 1

Lecture 1 – Introduction
Reading reference: Chap 1+2 + slides

● Introduction, homepage, literature mm
● What’s it all about?
● A problem to a program -
 example: traffic lights

● How to describe algorithms
● Pseudocode

Prerequisites:
● programming knowledge (Java, C, C++, ...)
● a course on data structures, incl. recursion
● elementary discrete mathematics
including proofs, logarithms, sums, ...

Next lecture:
 Analyzing complexity, slides + chap 2

(important subject +
not very good description in book)

F1 intro 2

This are copies of my slides - not lecture notes.

Lot’s of stuff appears only on the blackboard and
you may not be able to fully appreciate the slides
without that.

(Jag trycker dem för att de som är på
föreläsningen skall slippa (försöka) anteckna
Detta är alltså inte föreläsninganteckningar utan
saknar mycket av det som sägs, allt det som
skrivs på tavlan och tex de färger som finns på
OH bilderna. Är man på föreläsning kan man
komplettera med detta själv. Jag trycker så att
alla som kommer på föreläsning skall kunna få
kopior. När det är slut där så är det slut men
materialet finns ibland också på hemsidan.)

F1 intro 3

Literature:
Algorithm Design: Kleinberg, Tardos
 (book is also used in the adv. Alg. course)
 On the net price seem to be ≈ 556-1542:-

Programming assignments
with electronic submissions
You work in groups of ?? student

Preliminary schedule
Reading
week

1 2 3 4 5 6 7 8

lectures 1 2 2 2 2 2 2 0

exercises - 1 1 1 1 1 1 {1}

assignments - 1 1 1 1 1 1 -

supervision ? ? ? ?

Exam in the end of reading week 8
re-exam in december
+ exam also in maj, august
check helping aids before each exam

F1 intro 4

Problem to Computer program
1. Understand the problem, exactly what is the

solution supposed to do?
2. Formulate/specify the problem, in a

mathematical model.
(Half the job is to understand what problem to
solve and what model to use.)

3. Design (and describe) one (or several)
algorithms and corresponding data structures.
Informal solutions in pseudocode.
Understand why you might not succeed and
what to do then.

4. Prove it correct (or incorrect)
5. Analyze its resource requirements
6. Develop it more, e.g. make it: more efficient,

use less memory, easier to understand...

7. Implement the algorithm (Chose computer
language etc.)

8. Document, test... forever :-)
• (Compare with G. Polya: How to solve it 1945)

F1 intro 5

Goals with the Algorithms course
You will be able to

● Model problems Formulate a clear mathematical
model of real world problems.

● Design algorithms Construct algorithms with several
algorithm design methods like divide&conquer,
dynamic programming, greedy, backtrack and be
able to choose appropriate data structures and
abstractions.

● Describe your algorithms and their qualities
● Prove correctness of your algorithms
● Analyze algorithms: perform an objective evaluation
of the performance and be able to compare it to
other algorithms performance

● Develop your algorithm - make it better
● Recognise intractable problems and other classes
of problems like P, NP, NPC

You will also know something about
● Problem analysis: how to analyze the complexity of
a problem e.g. how much resources are required to
solve a problem.

● Approximation algorithms: how to solve problems
with exponential complexity.

In short: what you should do before you start
programming on a computer to ensure that what you
get afterwards is good quality.

F1 intro 6

Algorithmic ideas are pervasive...
in computer science and beyond

● Some of the major shifts in internet
routing standards

● The secret of life - bioinformatics:
How do your DNA gene sequence determine
you?

● Economics talking about electronic auctions,
eBay

● Hypersearching the Web: How do you
search the web for information?

● Aircraft crew scheduling
● Testing for reliability of hardware and
software

● search the web for “algorithm” and find out
(Approx. 127 000 000 results in
0,56 seconds)

F1 intro 7

Google - how do they do it?
Founder Larry Page: "The perfect search
engine" is defined as something that
– "understands exactly what you mean and
– gives you exactly what you want"

1998:
25 million pages (million== 106, billion = 109)
“Yesterday”:
25 billion pages, 1,3 billion pictures

● Google File System - a datastructure for
files

● Distributed hardware - Many computer
centers around the world with thousands of
rack mounted low-price PCs

● MapReduce - server software that
automatically split jobs on different
computers

● PageRank - an algorithm to give a page a
“rank”

● Algorithms for analyzing hypertext-
matchings

F1 intro 8

What is an Algorithm? (A)
• Intuitive: a method to solve a problem
• A precise, unambiguous and executable set of
instructions that (usually) are supposed to
terminate (supposed to be “computerised”).
• Rules for computation

What’s then a Problem? (Π)
• A general question to be answered or
• a description of the goal to achieve, usually with
unknown parameters.
You describe a problem by describing its input and
what characteristics the solution must fulfill.

All input given => an Instance (I)
By specifying all parameters you get an instance
of the problem.

An algorithm solves a problem if it can be applied
to every instance of the problem and always gives
a solution.
An algorithm like quicksort solves the problem of
sorting and a problem usually has many known
algorithms.

F1 intro 9

Problem - Instance - Algorithm
Problem 1:
 Given is a graph with n nodes and e edges
(description of parameters) how many colors
are needed to color the graph if two adjacent
nodes must not have the same color
(requirements on the solution)
Instance: You get an instance of the problem
by specifying all nodes and edges of the
graph.
Algorithm: perhaps the greedy one we will
see in a moment

Problem 2:
 Given is an array with n numbers (description
of parameters), sort the numbers in increasing
order (requirements on the solution).
Instance: You get an instance of the problem
by specifying all the numbers.
Algorithms: quicksort, mergesort,
bubblesort,...

F1 intro 10

Problem to Computer program
Let’s look at an example

without digging into to many details
Problem: Given are a set of allowed turns and
which of them that can’t be performed
simultaneously.
How many phases must the light in a traffic
crossing have and which turns can happen
simultaneously?
Allowed turns:
{AB,BC,DA,EA,AC,BC,DB,EB,AD,BA,DC,EC,ED}
Can’t happen simultaneously: AD-EB, AC-DB,...

Ex: AB and EC are possible simultaneous turns

F1 intro 11

How to model a problem

- It's a “simplification” and formalization of
the real world/problem being solved:
how to represent the problem in the “solution
domain”?

● A good model represent the world in a
suitable way for solving the problem at
hand.

● A model is a partial rather than a complete
representation, compare with a caricature.
It means that one should eliminate all
unnecessary information not relating to the
problem that is being analyzed.

And - a model that is inadequate under one
set of circumstances may be the best that
you can come up with under another set of
circumstances.

F1 intro 12

- The models quality depends on the question.
A book can be modeled/represented by:
- a list of the chapters (descriptive)
- its thickness
- by the formula T = t∗p where p=number of
pages and t the time it takes to read a page.
(mathematical, predictive)
Q: How long time to read a book?
Q: How many books can we fit in a bookshelf?

- Time and accuracy influence your model.
- A model impose what you can/can't do.
- Models are useful in their own right.
they allow for a formal definition of a
problem and can be useful in thinking about a
problem, they are “a laboratory for the
imagination”.

F1 intro 13

Mathematical model
We can use a graph:

Let nodes represent turns and arcs represent
turns that can’t happen simultaneously
We need to find a solution with as few phases
as possible with simultaneous turns.

This actually turns out to be a very well
known problem in computer science, coloring
of a graph, belonging to a very large class of
problems called “NPC”.
Unfortunately, no one has found a polynomial
algorithm to solve any one of them!
Let’s try a greedy approach...

F1 intro 14

How to present algorithms
1. Explain how it works

Use words, high level pseudocode and
illustrations. The important thing is to reveal
the underlying idea and as a help to
understand the pseudocode in the next step.
A “dry swim” of some steps is very good here.

2. Give an abstract algorithm in pseudocode
This is mixture of programming language,
mathematics, English, Swedish and other
suitable notation. You can use abstract data
types (for instance graphs, sets, lists...) and
sentences like “for every node w on EL(v) loop”

3. Prove that it works
4. Analyze its complexity
5. Describe the different parts of your

algorithm if that is needed for step 4 or 3 (To
show that your algorithm can be implemented
and to be able to analyze it in step 4.)

6. Implement more details
During this course you are expected to do step
1+2+3+4(+5) where (+5) is needed only if needed in
step 4 or 3. Exceptions to this are always
explicitly stated like “you only need to do step x”.

F1 intro 15

How the algorithm works
Try to color as many nodes as possible with
the first color, then as many as possible with
the second color and so on.

This is a so called greedy algorithm. It colors
without looking at the consequences later on.
In this case it will not always (seldom?) find
the optimal solution.
It delivers an approximate solution in short
time.

F1 intro 16

Pseudocode
Pseudocode should:
– give a (human-)readable description of the

algorithm and its structure
– be precise enough so that it can be

understood, analyzed and translated to
programming language code - but without
to many details

– balance between understandability and
precision

Generally you must describe your algorithm in
several steps so it is important to find good
abstractions and to divide the algorithm in
parts that can be described separately.

Not very good pseudocode (not precise enough)
handed in to describe mergesort:
"Split in two equal parts, put them together
so that they are sorted, repeat recursively".

F1 intro 17

Pseudocode
color(graph: G) return set

set: newclr = Ø
for every uncolored node v in G loop

if v isn’t connected to any
other node in newclr then

mark v colored
add v to newclr

end if
end loop
return newclr

end color
This algorithm are called several times until
all nodes are colored, then the empty set is
returned. Returned at every call are a set of
possible simultaneous turns.------------
We also need to describe the data structures
(graph and set) and their performance (to be
able to analyze our algorithm), explain how to
do things like “mark v colored” etc., prove
that the algorithm works and analyze its
resource requirements. More on this later.

F1 intro 18

Example: Good level of
pseudocode

This is Kruskals algorithm for computing minimum
spanning trees from Horowitz, Sahni, Rajasekaran:
Computer Algorithms 1998, page 224
// E is the set of all edges in the graph,
// t is the growing minimum spanning tree
t = Ø
while (t has < n-1 edges and E≠Ø) do

Chose an edge (v,w) from E
of lowest cost

Delete (v,w) from E
if (v,w) does not create a cycle in t

add (v,w) to t
else

discard (v,w)
}

This is a very good start, it’s readable, has
visible structure, but many things are missing.
I.e. it needs developing a bit further.
• What are the inputs to the algorithm?
• How are the graph and the set represented?
• How to find the edge of “lowest cost”
• How to check if there is a cycle?

F1 intro 19

Develop the algorithm
• How are the graph and the set represented?
Let the input to the algorithm be the set of
edges (could be a list) and the cost of the
edges (a cost matrix, construct this before
the algorithm starts) and don’t care more
about the graph representation here.
• What is the minimum cost?
Let the algorithm return the minimum cost
and the mst. Or compute afterwords.
• How to find the edge of “lowest cost”?
Place the edges in a priority queue. Then it’s
easy to find the minimum in log n time.
• How to check if there is a cycle?
The cycle part is perhaps a bit tricky. Use
Merge - Find sets to hold the connected
components constructed by Kruskals

F1 intro 20

Kruskals algorithm more details, same source
algorithm Kruskal (E, cost, n, t)
 // E is the set of edges in G with n vertices
 // cost(u,v) is the cost of edge (u,v),
 // t is the set of edges in the mst,
 // the final cost is returned
 Construct a heap out of the edge cost
 Each vertex is in a different set

i := 0, mincost := 0.0;
while((i<n-1) and (heap !empty)) do

Delete a minimum cost edge (u,v)
from the heap and reheapify
j := Find(u); k := Find(v);
if (j ≠ k) then

i := i+1;
insert((u,v), t);
mincost := mincost+ cost[u,v];
Union(j,k);

}
}
if (i≠n-1) then

write(“No span. tree”);
else return mincost;
}

Still some parts are missing (heap), that’s alright since
we know enough to analyze the algorithm. Some parts
are perhaps to detailed, like counting (i, mincost)

F1 intro 21

Next lecture:
How do we evaluate algorithms?

How good is an algorithm?
How to make i better?

Does it work?
How do we compare two algorithms?
Is it optimal (in speed, memory etc.)
How do we evaluate algorithms?

1. It must be correct - it must work.
2. Must be easy to understand, code, maintain
 etc.
3. Should use computer resources well
(speed, memory,...) e.g. should be “effective”

F1 intro 22

