
/GU

Testing, Debugging, and Verification
Testing, Part III

Srinivas Pinisetty1

06 November 2017

1Slides based on material from Wolfgang Aherndt,..

/GU

Overview of this Lecture

This lecture is all about unit testing

Specific topics:

I Recap: JUnit- a framework for rapid unit testing

I Recap: Integrating test units

I Principles of test set construction

I Quality criteria for test sets

/GU

JUnit (Recap.)

I Java testing framework to write and run automated tests
I JUnit features include:

I Assertions for testing expected results
I Annotations to designate test cases
I Sharing of common test data
I Graphical and textual test runners

I JUnit is widely used in industry

I JUnit used from command line or within an IDE (e.g., Eclipse)

/GU

Recap: JUnit and Extreme Testing

I Extreme testing
I Test-cases first: Clear idea of what program should do before

coding.
I Understanding of specification and requirements.
I Write test-cases first then implementation.

I Regression testing
I re-run after changes to code.

/GU

Recap: Integrating Test Units

Testing a unit may require:

Stubs (top-down) to replace called procedures

I Simulate behaviour of component not yet
developed.

I E.g. test code that calls a method not yet
implemented.

Drivers (bottom-up) to replace calling procedures

I Simulate environment from where procedure is
called.

I E.g. test harness.

/GU

Recap: Top-down vs Bottom-up Testing

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints
paycheck

Staff Database

Given name, looks up
address, position.

Person nr:
I Bottom-up?

start from e.g. Print Paycheck,
Staff Database

I Driver replacing the caller, here
Payroll System, Interface.

I Top-down?
start from e.g. Interface, then
Payroll System

I Stubs replacing called
procedures, i.e. Payroll System,
Staff Database, Print Paycheck.

/GU

Today

Terminology recap

I Specification

I Test case

I Test suite

Today: Principles of test suite construction

How do we pick test cases? When do we know we have enough
test cases?

/GU

Test Suites

Test Suite

A test suite is a set of test cases.

Most central activity of testing is the creation of test suites

How do we know if we have

I Enough test cases?

I The right test cases?

I Quality of test suites defines quality of overall testing effort

/GU

When do we have enough tests

Example

public s ta t i c boolean and(boolean a, boolean b)

The output is true if and only if both the inputs are true and false
otherwise.

Tests
I and(false,false) == false

I and(false,true) == false

I and(true,false) == false

I and(true,true) == true

/GU

When do we have enough tests

Example

public s ta t i c Integer [] sort(Integer [] a) {

...

}

I Complete/exhaustive testing is impossible in general.

I When do we have enough tests? (an answer: coverage
criteria)

I Coverage criteria: How much of the code is covered by the set
of tests?

I Different ways to define covered.

/GU

Coverage Criteria

Most metrics used as quality criteria for test suites describe the
degree of some kind of coverage.

These metrics are called coverage criteria.

Crucial for testing safety critical software.
Requirements of testing to certain coverage criteria.

/GU

Categories of Coverage Criteria

Following the categorisation of [AmmannOffutt] (simplified),
we group coverage criteria as follows:

Coverage Criteria Grouping

I Control flow graph coverage

I Logic coverage

I Input space partitioning

/GU

Control Flow Graph

Control Flow Graph

Represent implementation under test as graph:

I Every statement represented by a node

I Edges describe control flow between statements

I Edges can be constrained by conditions

/GU

Example

int russianMultiplication(int a, int b){

int z = 0;

while(a != 0){

i f (a%2 != 0){

z = z+b;

}

a = a/2;

b = b*2;

}

return z;

}

[example and graph by Christian Engel]

/GU

Control Flow Graph of russianMultiplication()

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

/GU

Control Flow Graph Notions

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Execution Path

A path through a control flow graph,
that starts at the entry point and is
either infinite or ends at one of the exit
points.

/GU

Statement Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)
Statement Coverage (SC)

SC is satisfied by a test suite TS , iff for
every node n in the control flow graph
there is at least one test in TS causing
an execution path via n.

For russianMultiplication():

I TS = {(a = 1, b = 0)} satisfies
statement coverage

/GU

Branch Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Branch Coverage (BC)

BC is satisfied by a test suite TS , iff
for every edge e in the control flow
graph there is at least one test in TS
causing an execution path via e.

BC subsumes SC.
For russianMultiplication():

I TS = {(a = 2, b = 0)} satisfies
branch coverage

/GU

Path Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Path Coverage (PC)

PC is satisfied by a test suite TS , iff
for every execution path ep of the
control flow graph there is at least one
test in TS causing ep.

PC subsumes BC.

I PC cannot be achieved in practice

I For russianMultiplication(),
number of execution paths is
>> 231

/GU

Mini Quiz: Graph Coverage

a = a/2;

a!=0

a%2=0

a%2!=0

a=0

b = b*2;

z = z+b;

if(a%2!=0)

int z = 0;

return z;

while(a!=0)

Does the following test cases
satisfy Statement Coverage,
Branch Coverage and/or Path
Coverage?

I [a=3, b=3] SC

I [a=0, b=2] neither

I [a=4, b=1] SC and BC

/GU

Logic Coverage

Logical (boolean) expressions can come from many sources:

1. Decisions in source code (e.g., if, while)

2. Decisions in software models (FSMs and statecharts)

3. Case distinctions in requirements

We focus on 1.

/GU

Decision Coverage

Let the decisions of a program p, D(p), be the set of all boolean
expressions which p branches on.

Decision Coverage (DC)

For a given decision d , DC is satisfied by a test suite TS if it

I Contains at least two tests

I one where d evaluates to false

I one where d evaluates to true

For a given program p, DC is satisfied by TS if it satisfies DC for
all decisions d ∈ D(p).

/GU

Decision Coverage

Example

For decision ((a < b) || D) && (m ≥ n ∗ o)),
DC is satisfied for instance if TS triggers executions with:

a = 5, b = 10,D = true,m = 1, n = 1, o = 1
and
a = 10, b = 5,D = false,m = 1, n = 1, o = 1

Inner Value Problem
I the above values are not test case inputs, but values at the

time of executing the decision

I finding corresponding input values

/GU

Condition Coverage

Let the conditions of a program p, C (p), be the set of all boolean
sub-expressions c of decisions in D(p), such that c does not
contain other boolean sub-expressions.

Given the decision ((a < b) || D) && (m ≥ n ∗ o)),
the conditions are: (a < b), D, and (m ≥ n ∗ o).

Condition Coverage (CC)

For a given condition c , CC is satisfied by a test suite TS if it

I contains at least two tests

I one where c evaluates to false

I one where c evaluates to true

For a given program p, CC is satisfied by TS if it satisfies CC for
all conditions c ∈ C (p).

/GU

Condition Coverage

Example

For each condition in ((a < b) || D) && (m ≥ n ∗ o)),
CC is satisfied for instance if TS triggers executions with:

a = 5, b = 10,D = true,m = 1, n = 1, o = 1
and
a = 10, b = 5,D = false,m = 1, n = 2, o = 2

No subsumption

I Consider p || q, tests = {(true, false), (false, true)}
I Note that condition coverage does not imply decision coverage

or vice versa, above example has no decision coverage.

/GU

Modified Condition Decision Coverage, MCDC

Modified Condition Decision Coverage, MCDC

For a given condition c in decision d , MCDC is satisfied by a test
suite TS if it

I contains at least two tests,

I one where c evaluates to false,

I one where c evaluates to true,

I d evaluates differently in both, and

I other conditions in d evaluate identically in both

For a given program p, MCDC is satisfied by TS if it satisfies
MCDC for all c ∈ C (p).

/GU

Modified Condition Decision Coverage, MCDC

Example

For condition a < b in decision ((a < b) || D) && (m ≥ n ∗ o)),
MCDC is satisfied for instance if TS triggers executions with:

a = 5, b = 10, D = false,m = 1, n = 1, o = 1
and
a = 10, b = 5, D = false,m = 8, n = 2, o = 3

Note: To have MCDC for whole decision also need test-cases for
conditions D and (m ≥ n ∗ o)

(Note that the examples on slides 23 and 25 do not guarantee
MCDC.)

/GU

Modified Condition Decision Coverage, MCDC

MCDC in industrial certification standard

MCDC is required in the avionics certification standard DO-178 as
the criterion to test adequately Level A software (failure of which
is classified as ‘Catastrophic’).

/GU

Mini Quiz: Logical Coverage

Suppose a program contains the decision if(x < 1 || y > z)

Does the following test sets satisfy Decision Coverage, Condition
Coverage and/or MCDC?

I [x=0, y=0, z=1] and [x=2, y=2, z=1]

CC

I [x=2, y=2, z=1] and [x=2, y=0, z=1]

DC

I [x=2, y=2, z=2], [x=0, y=0, z=1],
[x=2, y=0, z=0], [x=2, y=2, z=1]

DC, CC, MCDC

/GU

Input Space Partitioning

I Ultimately all testing is about choosing elements from input
space

I Input space partitioning takes that view in a more direct way

I Input space partitioned into regions that are assumed to
contain ‘equally useful values’

I Test cases contain values from each region

/GU

Partitioning Domains

A partitioning q of a domain D defines a set of blocks,
Bq = {b1, . . . , bn}, such that:

I the blocks bi are pairwise disjoint (no overlap)

I together the blocks cover the domain D (complete)

b
2

b
3

b
4

b
1

Normally, different partitionings are combined (example later)

/GU

Examples

Consider the domain of integer arrays.

Are the following blocks a partitioning?

I b1 = sorted in ascending order

I b2 = sorted in descending order

I b3 = arbitrary order

Answer: no!

I The array [1] belongs to all blocks

/GU

Combining Partitionings

When creating test cases for findElement (int[] arr, int

elem)

partitioning q: arr is null (bq1) or not (bq2)

partitioning r : arr is empty (br1) or not (br2)

partitioning s: number of elem in arr is 0 (bs1), 1 (bs2), or >1
(bs3)

Note:

I r is a sub-partitioning of bq2
I bs2 and bs3 are sub-blocks of br2
I bs1 overlaps with br1 and bq2

(fine, as r and s are different partitionings)

/GU

Strategies for Identifying Values

After partitioning, one still has to choose values from the blocks.

Strategies

I Include valid, invalid and special values

I Sub-partition some blocks

I Explore boundaries of domains

/GU

Discussion: Input Space Partitionings

Recall the method russianMultiplication(int a, int b).

Suggest some input space partitionings.

E.g.

I a ≥ 0 or a < 0

I b ≥ 0 or b < 0

I a ≥ b or a < b

/GU

Example

Example

public s ta t i c int binarySearch(int [] arr , int
elem)

Specification

requires: arr !=null, arr is sorted ascendingly
ensures: if there exists an element of arr that is equal to elem then
arr[result] == elem, otherwise result == -1

I Partition 1: elem in array, elem not in array
I Sub-partition of not in array: elem < min(array), min(array)

<= elem <= max(array), max(array) < elem
I Sub-partition of in array: left of middle, middle, right of middle

/GU

Example (cont.)

I Partition 1: elem in array, elem not in array
I Sub-partition of not in array: elem < min(array), min(array)

<= elem <= max(array), max(array) < elem
I Sub-partition of in array: left of middle, middle, right of middle

I Not in array:
I binarySearch({1, 3, 5, 8}, 0); <
I binarySearch({2, 4, 76, 40}, 3); in
I binarySearch({34, 64, 75, 100}, 101); >

I In array:

I binarySearch({0, 2, 4, 6, 44}, 0); left border
I binarySearch({4, 5, 34, 55, 66}, 5); left/middle
I binarySearch({4, 5, 34, 55, 66}, 34); middle
I binarySearch({4, 5, 34, 55, 66}, 55); right/middle
I binarySearch({3, 4, 5, 6, 432, 1000}, 1000); rightborder

/GU

Input Space Partitioning

I Look at specification

I Divide input space into regions with for which the program
acts similar

I Take some inputs from regions, especially from borders

Use multiple partitions, subdivide partitions when sensible

This is a guideline, not a formal procedure: use common sense to
define similar, border and sensible

/GU

Black-box Vs. White-box testing

Black-box testing

Deriving test suites from external descriptions of the software, e.g.

I Specifications

I Requirements / Design

I Input space knowledge

Does not require knowledge of internals (i.e., source code)

White-box testing

Deriving test suites from the source code internals of the software,
e.g.

I Conditions

I Branches in execution

I Statements

/GU

Summary

I Control Flow Graph Coverage
I Statement coverage: every node visited.
I Branch coverage: every edge traversed.
I Path coverage: every excecution path (usually too many!)

I Logic Based Coverage
I Decision coverage: test for each decision true/false.
I Condition coverage: each sub-expression true/false.
I MCDC: sub-expression true/false AND affecting decision.

I Input Space Partitioning
I Input space split into disjoint regions.

/GU

Literature related to this Lecture

I Introduction to Software Testing - by Paul Ammann, Jeff
Offutt

I Graph coverage (Chapter 2),
I Logic coverage (Chapter 3), and
I Input space partitioning (Chapter 4).

	Overview
	JUnit
	Recap: Integrating Test Units
	Principles of Test Suite Construction
	Coverage Criteria

