
/GU

Testing, Debugging, and Verification
TDA567/DIT082

Introduction

Srinivas Pinisetty

30 October 2017



/GU

Software is everywhere

Complexity, evolution, reuse, multiple domains/teams, · · ·



/GU

Software bug· · ·

I Error

I Fault

I Failure

I · · ·

A software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or
unexpected result, or to behave in unintended ways. – Wikipedia



/GU

Introduction: Testing, Debugging, (Specification) and
Verification

Introduction to techniques to get (some) certainty that your
program does what it is supposed to do.

I Does my program do what it’s supposed to do?
I If not, why?
I Have I understood exactly what it is supposed to do?

I Can I give any guarantees that my program does the right
thing?

I Introduction and overview of main techniques.
I Orientation of main concepts.
I If you have taken another course on e.g. testing, some

material might be familiar.



/GU

Introduction: Testing, Debugging, (Specification) and
Verification

Introduction to techniques to get (some) certainty that your
program does what it is supposed to do.

I Does my program do what it’s supposed to do?
I If not, why?
I Have I understood exactly what it is supposed to do?

I Can I give any guarantees that my program does the right
thing?

I Introduction and overview of main techniques.
I Orientation of main concepts.
I If you have taken another course on e.g. testing, some

material might be familiar.



/GU

Introduction: Testing, Debugging, (Specification) and
Verification

Introduction to techniques to get (some) certainty that your
program does what it is supposed to do.

I Does my program do what it’s supposed to do?
I If not, why?
I Have I understood exactly what it is supposed to do?

I Can I give any guarantees that my program does the right
thing?

I Introduction and overview of main techniques.
I Orientation of main concepts.
I If you have taken another course on e.g. testing, some

material might be familiar.



/GU

Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDA567/

Google News Group

I Sign up via course home page (follow News link).

I Changes, updates, questions, discussions.

I Don’t post solutions!

Passing Criteria

I Written exam 09 Jan 2018; re-exam Apr 2018

I Three lab hand-ins

I Exam and labs can be passed separately

www.cse.chalmers.se/edu/course/TDA567/


/GU

Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDA567/

Google News Group

I Sign up via course home page (follow News link).

I Changes, updates, questions, discussions.

I Don’t post solutions!

Passing Criteria

I Written exam 09 Jan 2018; re-exam Apr 2018

I Three lab hand-ins

I Exam and labs can be passed separately

www.cse.chalmers.se/edu/course/TDA567/


/GU

Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDA567/

Google News Group

I Sign up via course home page (follow News link).

I Changes, updates, questions, discussions.

I Don’t post solutions!

Passing Criteria

I Written exam 09 Jan 2018; re-exam Apr 2018

I Three lab hand-ins

I Exam and labs can be passed separately

www.cse.chalmers.se/edu/course/TDA567/


/GU

Team

Teachers
I Lecturer: Srinivas Pinisetty (sripin)

I Researcher in Formal Methods group.

I Examiner: Wolfgang Ahrendt (ahrendt)
I Associate Professor in the Formal Methods group.

Course Assistants
I Mauricio Chimento (chimento). PhD student (FM division)

I Simon Robillard (simon.robillard). PhD student (FM
division)

I Jeff Yu-Ting Chen (yutingc). PhD student (FM division)

office hours: by appointment via email.

. . . append @chalmers.se to obtain email address



/GU

Contact hours per week

Contact hours
I Lectures: Mondays 15:15-17:00, and Thursdays 10:00-11:45.

I Labs: Mondays 13:15-15:00.

I Exercises: Thursdays 08:00 - 09:45.

Exceptions

I This Thursday: Lecture 08:00 - 09:45, and 10:00-11:45.

I November 09: Exercise and lecture rescheduled to November
10.



/GU

Contact hours per week

Contact hours
I Lectures: Mondays 15:15-17:00, and Thursdays 10:00-11:45.

I Labs: Mondays 13:15-15:00.

I Exercises: Thursdays 08:00 - 09:45.

Exceptions

I This Thursday: Lecture 08:00 - 09:45, and 10:00-11:45.

I November 09: Exercise and lecture rescheduled to November
10.



/GU

Structure

Course Structure

Topic # Lectures Exercises Lab

Intro 1 8 8

Testing and Debugging 4 4 4

Formal Specification 3 4 4

Formal Verification 2 4 4

Guest Lectures 3 8 8



/GU

Course Literature

Lecture notes, exercise and lab material
I Lecture notes on the course webpage (appear online shortly

after each lecture).

I Exercises material on the course webpage (questions before
the exercise session, and sample solutions shortly after).

Some suggested books

I Why Programs Fail: A Guide to Systematic Debugging1),
2nd edition, A Zeller

I The Art of Software Testing1), 2nd Edition, G J Myers

I Introduction to Software Testing1), P Ammann & J Offutt

See course website for a list of books, additional references

1) available online as e-books via Chalmers library



/GU

Course Literature

Lecture notes, exercise and lab material
I Lecture notes on the course webpage (appear online shortly

after each lecture).

I Exercises material on the course webpage (questions before
the exercise session, and sample solutions shortly after).

Some suggested books

I Why Programs Fail: A Guide to Systematic Debugging1),
2nd edition, A Zeller

I The Art of Software Testing1), 2nd Edition, G J Myers

I Introduction to Software Testing1), P Ammann & J Offutt

See course website for a list of books, additional references

1) available online as e-books via Chalmers library



/GU

Labs

Labs
I Submission via Fire, linked from course home page
I You must team up in groups of two

1. team up with the partner of your choice
2. if you can’t find one, call for a partner via Google group
3. if the above does not work, contact the course assistants

(Mauricio, Simon and Jeff)

I Must submit at least a first version by deadline.
I If submission get returned, ca. one week for correction
I Testing 22 Nov, Formal Spec 6 Dec, Verification 20 Dec

If there are Problems

Notify us immediately if you run into problems. e.g.

I Lab partner drops course.

I Problems solving some part of the lab - Ask for help!

I Don’t wait until after the deadline.



/GU

Labs

Labs
I Submission via Fire, linked from course home page
I You must team up in groups of two

1. team up with the partner of your choice
2. if you can’t find one, call for a partner via Google group
3. if the above does not work, contact the course assistants

(Mauricio, Simon and Jeff)

I Must submit at least a first version by deadline.
I If submission get returned, ca. one week for correction

I Testing 22 Nov, Formal Spec 6 Dec, Verification 20 Dec

If there are Problems

Notify us immediately if you run into problems. e.g.

I Lab partner drops course.

I Problems solving some part of the lab - Ask for help!

I Don’t wait until after the deadline.



/GU

Labs

Labs
I Submission via Fire, linked from course home page
I You must team up in groups of two

1. team up with the partner of your choice
2. if you can’t find one, call for a partner via Google group
3. if the above does not work, contact the course assistants

(Mauricio, Simon and Jeff)

I Must submit at least a first version by deadline.
I If submission get returned, ca. one week for correction
I Testing 22 Nov, Formal Spec 6 Dec, Verification 20 Dec

If there are Problems

Notify us immediately if you run into problems. e.g.

I Lab partner drops course.

I Problems solving some part of the lab - Ask for help!

I Don’t wait until after the deadline.



/GU

Labs

Labs
I Submission via Fire, linked from course home page
I You must team up in groups of two

1. team up with the partner of your choice
2. if you can’t find one, call for a partner via Google group
3. if the above does not work, contact the course assistants

(Mauricio, Simon and Jeff)

I Must submit at least a first version by deadline.
I If submission get returned, ca. one week for correction
I Testing 22 Nov, Formal Spec 6 Dec, Verification 20 Dec

If there are Problems

Notify us immediately if you run into problems. e.g.

I Lab partner drops course.

I Problems solving some part of the lab - Ask for help!

I Don’t wait until after the deadline.



/GU

Exercises

Exercises
I One (or two) exercise session for each topic (6 in all)
I Before each session:

I we post exercise questions on web page
I install software on your laptop
I have a look at home, try to solve

I During each exercise session:
I bring laptop with relevant software installed
I ask questions!
I discuss solutions together



/GU

Course Evaluation

I Course evaluation group
I student representatives: Chalmers (randomly selected), GU

(volunteers)
I feedback meetings with teachers
I one meeting during the course, one after

I Web questionnaire after the course

Representatives Chalmers

Admas Aklilu admas

Kevin Chen Trieu kevintr

Rasmus Jemth jemthr

Johannes Mattsson jomatts

Jonatan Nylund nylundj
For email address append: @student.chalmers.se

Representatives GU

Please consider volunteering



/GU

Course Evaluation

I Course evaluation group
I student representatives: Chalmers (randomly selected), GU

(volunteers)
I feedback meetings with teachers
I one meeting during the course, one after

I Web questionnaire after the course

Representatives Chalmers

Admas Aklilu admas

Kevin Chen Trieu kevintr

Rasmus Jemth jemthr

Johannes Mattsson jomatts

Jonatan Nylund nylundj
For email address append: @student.chalmers.se

Representatives GU

Please consider volunteering



/GU

Course Evaluation

I Course evaluation group
I student representatives: Chalmers (randomly selected), GU

(volunteers)
I feedback meetings with teachers
I one meeting during the course, one after

I Web questionnaire after the course

Representatives Chalmers

Admas Aklilu admas

Kevin Chen Trieu kevintr

Rasmus Jemth jemthr

Johannes Mattsson jomatts

Jonatan Nylund nylundj
For email address append: @student.chalmers.se

Representatives GU

Please consider volunteering



/GU

Cost of Software Errors

$ 312 billion
(annual global cost)

Source: Cambridge University, Judge Business School 2013
http:

//www.prweb.com/releases/2013/1/prweb10298185.htm

http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://www.prweb.com/releases/2013/1/prweb10298185.htm


/GU

Cost of Software Errors

estimated

50%
of programmers time spent on finding and fixing bugs.



/GU

Cost of Software Errors

$ 407 billion
Size of global software industry in 2013.

Source: Gartner, March 2014
http://www.gartner.com/newsroom/id/2696317

Cost of bugs approximately 3/4 of the size of the whole industry...

http://www.gartner.com/newsroom/id/2696317


/GU

Software fault examples: Ariane 5 rocket

I Exploded right after launch

I Conversion of 64-bit float to 16-bit integer caused an
exception (made it crash)

I European space agency spent 10 years and 7 billion USD to
produce Ariane 5



/GU

Software fault examples: Pentium Floating Point Bug

I Incorrect result through floating point division

I Rarely encountered in practice

I 1 in 9 billion floating point divides with random parameters
would produce inaccurate results (Byte magazine)

I 475 million dollars, reputation of Intel.



/GU

Cost of Software Errors: Conclusion

Huge gains can be realized in SW development by:
I systematic

I efficient

I tool-supported

testing, debugging, and verification methods

In addition . . .

The earlier bugs can be removed, the better.



/GU

Errors in Safety Critical Systems

Not just economic loss...

Therac-25 Radiotherapy Machine (1985-87)

I Patients overdosed.

I Three dead, two severely injured.

I SW bug causing radiation level entry to be ignored.

Toyota Unintended Acceleration (2000-05)

I Bugs in electronic throttle control system.

I Car kept accelerating on its own.

I May have caused up to 89 deaths in accidents.

I Recalls of 8 million vehicle.



/GU

Errors in Safety Critical Systems

Not just economic loss...

Therac-25 Radiotherapy Machine (1985-87)

I Patients overdosed.

I Three dead, two severely injured.

I SW bug causing radiation level entry to be ignored.

Toyota Unintended Acceleration (2000-05)

I Bugs in electronic throttle control system.

I Car kept accelerating on its own.

I May have caused up to 89 deaths in accidents.

I Recalls of 8 million vehicle.



/GU

Defects in software: Problem sources

I Requirements: Incomplete, inconsistent, · · ·
I Design: Flaws in design

I Implementation: Programming errors, · · ·
I Tools:Defects in support systems and tools used



/GU

Defects in software: Problem sources

I Requirements: Incomplete, inconsistent, · · ·

I Design: Flaws in design

I Implementation: Programming errors, · · ·
I Tools:Defects in support systems and tools used



/GU

Defects in software: Problem sources

I Requirements: Incomplete, inconsistent, · · ·
I Design: Flaws in design

I Implementation: Programming errors, · · ·
I Tools:Defects in support systems and tools used



/GU

Defects in software: Problem sources

I Requirements: Incomplete, inconsistent, · · ·
I Design: Flaws in design

I Implementation: Programming errors, · · ·

I Tools:Defects in support systems and tools used



/GU

Defects in software: Problem sources

I Requirements: Incomplete, inconsistent, · · ·
I Design: Flaws in design

I Implementation: Programming errors, · · ·
I Tools:Defects in support systems and tools used



/GU

Brainstorm

How can you get some assurance that a program does what you
want it to do?

Techniques for assurance

I Testing

I Pair programming, code review, · · ·
I Formal verification

I Usually more assurance = more effort

I Research focus on more assurance for less effort



/GU

Brainstorm

How can you get some assurance that a program does what you
want it to do?

Techniques for assurance

I Testing

I Pair programming, code review, · · ·
I Formal verification

I Usually more assurance = more effort

I Research focus on more assurance for less effort



/GU

Brainstorm

How can you get some assurance that a program does what you
want it to do?

Techniques for assurance

I Testing

I Pair programming, code review, · · ·
I Formal verification

I Usually more assurance = more effort

I Research focus on more assurance for less effort



/GU

Brainstorming on Course Title

I What is Testing?

I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?
I Understand why a program does not do what it is supposed to,

usually via tool support such as the Eclipse debugger
I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?
I Determine whether a piece of software fulfils a set of formal

requirements in every execution
I Formally prove method correct (find evidence of absence of

failure)



/GU

Brainstorming on Course Title

I What is Testing?
I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?
I Understand why a program does not do what it is supposed to,

usually via tool support such as the Eclipse debugger
I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?
I Determine whether a piece of software fulfils a set of formal

requirements in every execution
I Formally prove method correct (find evidence of absence of

failure)



/GU

Brainstorming on Course Title

I What is Testing?
I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?

I Understand why a program does not do what it is supposed to,
usually via tool support such as the Eclipse debugger

I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?
I Determine whether a piece of software fulfils a set of formal

requirements in every execution
I Formally prove method correct (find evidence of absence of

failure)



/GU

Brainstorming on Course Title

I What is Testing?
I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?
I Understand why a program does not do what it is supposed to,

usually via tool support such as the Eclipse debugger
I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?
I Determine whether a piece of software fulfils a set of formal

requirements in every execution
I Formally prove method correct (find evidence of absence of

failure)



/GU

Brainstorming on Course Title

I What is Testing?
I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?
I Understand why a program does not do what it is supposed to,

usually via tool support such as the Eclipse debugger
I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?

I Determine whether a piece of software fulfils a set of formal
requirements in every execution

I Formally prove method correct (find evidence of absence of
failure)



/GU

Brainstorming on Course Title

I What is Testing?
I Evaluating software by observing its execution
I Execute program with the intent of finding failures (try out

inputs, see if outputs are correct)
I A mental discipline that helps IT professionals develop better

software

I What is Debugging?
I Understand why a program does not do what it is supposed to,

usually via tool support such as the Eclipse debugger
I The process of finding a defect given a failure
I Relating a failure to a defect

I What is Verification?
I Determine whether a piece of software fulfils a set of formal

requirements in every execution
I Formally prove method correct (find evidence of absence of

failure)



/GU

Bug Etymology

Harvard University, Mark II
see www.jamesshuggins.com/h/tek1/first_computer_bug.htm

www.jamesshuggins.com/h/tek1/first_computer_bug.htm


/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



/GU

Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by: a specification!



/GU

Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by: a specification!



/GU

Specification: Intro

I Specification: An unambiguous description of what a program
should do.

I Bug: Failure to meet specification.

I Every program is correct with respect to SOME specification.



/GU

Specification: Intro

Economist:
The cows in Scotland
are brown

Logician:
No, there are cows in
Scotland of which one
at least is brown!

Computer Scientist:
No, there is at least
one cow in Scotland,
which on one side is
brown!!



/GU

Specification: Intro

Economist:
The cows in Scotland
are brown

Logician:
No, there are cows in
Scotland of which one
at least is brown!

Computer Scientist:
No, there is at least
one cow in Scotland,
which on one side is
brown!!



/GU

Specification: Intro

Economist:
The cows in Scotland
are brown

Logician:
No, there are cows in
Scotland of which one
at least is brown!

Computer Scientist:
No, there is at least
one cow in Scotland,
which on one side is
brown!!



/GU

Specification: Intro

Economist:
The cows in Scotland
are brown

Logician:
No, there are cows in
Scotland of which one
at least is brown!

Computer Scientist:
No, there is at least
one cow in Scotland,
which on one side is
brown!!



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification?



/GU

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification

Requires: a is an array of integers
Ensures: returns sorted array



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a sorted array
Is this a good specification?



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a sorted array
Is this a good specification?

sort({2, 1, 2}) == {1, 2, 2, 17} 8



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers

Ensures: returns a sorted array with only elements from
a



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers

Ensures: returns a sorted array with only elements from
a

sort({2, 1, 2}) == {1, 1, 2} 8



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

sort(null) throws NullPointerException 8



/GU

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is a non-null array of integers
Ensures: returns a permutation of a that is sorted



/GU

The Contract Metaphor

Contract is preferred specification metaphor for procedural and
OO PLs

first propagated by B. Meyer, Computer 25(10)40–51, 1992

Same Principles as Legal Contract between a Client and
Supplier

Supplier: (callee) aka implementer of a method

Client: (Caller) implementer of calling method, or human
user for main()

Contract: One or more pairs of ensures/requires clauses
defining mutual obligations of supplier and client



/GU

The Meaning of a Contract

Specification (of method C.m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C.m() fulfills the required Precondition, then the
callee C.m() ensures that the Postcondition holds after C.m()

finishes.”



/GU

Specification, Failure, Correctness

What constitutes a failure

A method fails when it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state
fulfilling the postcondition to be ensured.

A method is correct means:

whenever it is started in a state fulfilling the required precondition,
then it terminates in a state fulfilling the postcondition to be
ensured.

Correctness amounts to proving absence of failures! A correct
method cannot fail!



/GU

Specification, Failure, Correctness

What constitutes a failure

A method fails when it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state
fulfilling the postcondition to be ensured.

A method is correct means:

whenever it is started in a state fulfilling the required precondition,
then it terminates in a state fulfilling the postcondition to be
ensured.

Correctness amounts to proving absence of failures! A correct
method cannot fail!



/GU

This course

Introduction to techniques to get (some) certainty that your
program does what it is supposed to.



/GU

Testing

Test: try out inputs, see if outputs are correct

Testing means to execute a program with the intent of detecting
failure

This course:terminology, testing levels, unit testing, black box vs
white box, principles of test-set construction/coverage, automated
and repeatable testing (JUnit)



/GU

Debugging

Understand why a program does not do what it is supposed to,
usually via tool support such as the Eclipse debugger

I Testing attempts exhibit new failures

I Debugging is a systematic process that finds (and eliminates)
the defect that led to an observed failure

This course: Input minimisation, systematic debugging, logging,
program dependencies (tracking cause and effect)



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct



/GU

Verification

Testing cannot guarantee correctness, i.e., absence of failures

Verification: Mathematically prove method correct

I Goal: find evidence for absence of failures

Code Formal specification

correct?

Program Verification System

correct

This course: Formal verification (logics, tool support)
Follow-up course: Formal Methods in Software Development



/GU

Course contents

How do we get some certainty that your program does what it is
supposed to?

I Testing: Try out inputs, does what you want?
terminology, testing levels, unit testing, black box vs white
box, principles of test-set construction/coverage, automated
and repeatable testing (JUnit)

I Debugging: What to do when things go wrong
Input minimisation, systematic debugging, logging, program
dependencies (tracking cause and effect)

I Formal specification & verification: Prove that there are no
bugs
Logic, define specification formally, assertions, invariants,
formal verification tools, formal proofs



/GU

Course contents

How do we get some certainty that your program does what it is
supposed to?

I Testing: Try out inputs, does what you want?
terminology, testing levels, unit testing, black box vs white
box, principles of test-set construction/coverage, automated
and repeatable testing (JUnit)

I Debugging: What to do when things go wrong
Input minimisation, systematic debugging, logging, program
dependencies (tracking cause and effect)

I Formal specification & verification: Prove that there are no
bugs
Logic, define specification formally, assertions, invariants,
formal verification tools, formal proofs



/GU

Tools

Tools Used in This Course
I Automated running of tests: JUnit

I Debugging: Eclipse debugger.

I Formal specification and verification: Dafny


	Organisation
	Cost of Errors and Testing
	Brainstorming on Course Title
	Terminology
	Specification

