Testing, Debugging, and Verification

Formal Specification, Part Il

Srinivas Pinisetty!

November 27, 2017

!Lecture slides based on material from Wolfgang Aherndt,.. CHALMERS/GU

Last Lecture

v

Introduced Dafny: An object oriented language with formal
specification

v

Pre- and postconditions: requires/ensures

v

modifies clauses: What fields may method change

> assert statements

Outside method body Dafny only “remembers” annotations (pre-
and postconditions).

CHALMERS/GU

Methods, Functions and Predicates

» Methods cannot be used in annotations (may change
memory).

CHALMERS/GU

Methods, Functions and Predicates

» Methods cannot be used in annotations (may change
memory).
» functions and predicates

» Cannot write to memory
» Single statement
» reads keyword states what location functions looks up.

CHALMERS/GU

Dafny Functions

» Mathematical functions.
» Cannot write to memory (unlike methods). Safe to use in
spec.
» Can only be used in annotations.
» Single unnamed return value, body is single statement (no
semicolon).
A Function

function abs(x : int) : int
{ if x < 0 then -x else x }

» Now, can write e.g. assert abs(3) == 3;.

» Or, ensures r == abs(x).

CHALMERS/GU

Dafny Functions

A function method

function method abs(x : int) : int {
if x < 0 then -x else X

» Functions are only used for verification.
» Not present in compiled code.

» Functions which does exactly same as a method can be
declared function methods.

CHALMERS/GU

Recall: Predicates

Functions returning a boolean are called predicates.
A predicate

predicate ready()
reads this; {
insertedCard == null &% wrongPINCounter == 0 &&
auth == false; }

CHALMERS/GU

Recall: Predicates

Functions returning a boolean are called predicates.
A predicate

predicate ready()
reads this; {
insertedCard == null &% wrongPINCounter == 0 &&
auth == false; }

Predicates are useful for "naming” common properties used in
many annotations:

Example

method spitCardOut() returns (card : BankCard)
modifies this;
requires insertedCard != null;
ensures card == old(insertedCard) ;
ensures ready() ;

.RS/GU

A few words on Framing

Reading Frame: memory region allowed to be read by function or
predicate (all fields of this object in the example below)

predicate ready()
reads this;
{insertedCard == null && wrongPINCounter == 0 &&
auth == false;}

Why?

Efficiency.
We know that a the value of an expression only changes if:
Something that the expression reads is modified

CHALMERS/GU

Framing: Modifies clauses

Recall

method insertCard(c : BankCard)
modifies ~insertedCard;

» Methods may read any part of memory

» Must declare what they change

» reads and modifies crucial for efficiency and feasibility of
automated proofs.

CHALMERS/GU

Framing: Modifies clauses

Recall

method insertCard(c : BankCard)
modifies ~insertedCard;

» Methods may read any part of memory

» Must declare what they change

» reads and modifies crucial for efficiency and feasibility of
automated proofs.

Dafny requires you to state which variables are:
Read (for functions)
Modified (for methods)

CHALMERS/GU

More built in Data-structures: Sets

» Dafny also support Sets.
» Set: Collection of elements, no duplication.

» Immutable, allowed in annotations.

» Cannot be modified once created.
» "Modification” by creating a new Set.
» c.f. strings in Java.

Examples: See Dafny online tutorial

(https://rise4fun.com/Dafny/tutorial/Sets).

CHALMERS/GU

https://rise4fun.com/Dafny/tutorial/Sets

Examples: Sets

Basics

var sl := {}; // the empty set

var s2 := {1, 2, 3}; // set contains exactly 1, 2,
and 3

assert s2 == {1,1,2,3,3,3,3}; // true, no duplicates.

<

CHALMERS/GU

Examples: Sets

Basics

var sl := {}; // the empty set

var s2 := {1, 2, 3}; // set contains exactly 1, 2,
and 3

assert s2 == {1,1,2,3,3,3,3}; // true, no duplicates.

Union, intersection and set difference

var s3, s4 := {1,2}, {1,4};

assert s2 + s4 == {1,2,3,4}; // set union

assert s2 * s3 == {1,2} && s2 * s4 == {1}; // set
intersection
assert s2 - s3 =

{3}; // set difference

CHALMERS/GU

Examples: Sets

Subset operators

assert {1} <= {1, 2} && {1, 2} <= {1, 2}; // subset
assert {} < {1, 2} && '({1} < {1}); // strict, or
proper, subset

assert {1, 2} == {1, 2} && {1, 3} '= {1, 2}; //
equality and non-equality

CHALMERS/GU

Examples: Sets

Subset operators

assert {1} <= {1, 2} && {1, 2} <= {1, 2}; // subset
assert {} < {1, 2} && '({1} < {1}); // strict, or
proper, subset

assert {1, 2} == {1, 2} && {1, 3} '= {1, 2}; //
equality and non-equality

Set Membership

assert 5 in {1,3,4,5};
assert 1 in {1,3,4,5%};
assert 2 !in {1,3,4,5};
assert forall x :: x !in {};

CHALMERS/GU

Recap: Using Quantified Dafny expressions

How to express:

» An array arr only holds values < 2

CHALMERS/GU

Recap: Using Quantified Dafny expressions

How to express:

» An array arr only holds values < 2

forall i :: O <= i <arr.Length ==> arr[i] <= 2

CHALMERS/GU

Recap: Using Quantified Dafny expressions

How to express:

» The variable m holds the maximum entry of array arr

CHALMERS/GU

Recap: Using Quantified Dafny expressions

How to express:

» The variable m holds the maximum entry of array arr

forall i :: 0 <= i < arr.Length ==> m >= arr[i]

Is this enough?

CHALMERS/GU

Recap: Using Quantified Dafny expressions

How to express:

» The variable m holds the maximum entry of array arr

forall i :: 0 <= i < arr.Length ==> m >= arr[i]
Is this enough?

arr.Length > 0 ==

exists i :: 0 <= i1 < arr.Length && m == arr[il

CHALMERS/GU

Example: Specifying LimitedIntegerSet

class LimitedIntegerSet {
var limit : int;
var arr : array<int>;

var size : int;

method Init(lim : int)

{
limit := lim;
arr := new int[lim];
size := 0;
}

method Contains(elem : int) returns (res : bool){/*...*/

}
method Find(elem : int) returns (index : int) {/*...*/}
method Add(elem : int) returns (res : bool) {/*...x*/}

CHALMERS/GU

Specifying Init: A validity predicate

What are the allowed values for the fields of a LimitedInSet?
class LimitedIntegerSet {

var limit : int;
var arr : array<int>;
var size : int;

predicate Valid()
reads this, this.arr;
{arr '= null &&
0 <= size <= limit &&
limit == arr.Length}

CHALMERS/GU

Specifying Init

method Init(lim : int)
modifies this;
requires lim > O;
ensures Valid();
ensures limit == lim && size == 0;
ensures fresh(arr);

{. ..}

v

New objects are indeed valid.

v

Parameters set correctly.

v

Array is freshly allocated.

v

The fresh keyword: for the verifier to know that some given
object has been freshly allocated in a given method

CHALMERS/GU

Specifying contains

method contains (elem : int)

v

Has no effect on the state.

v

Returns a boolean.

v

Might be useful in specifications.

v

Let's make it a function method!

CHALMERS/GU

Specifying contains

method contains (elem : int)

v

Has no effect on the state.

v

Returns a boolean.

v

Might be useful in specifications.

» Let's make it a function method!

function method contains (elem : int) : bool
reads this, this.arr;
requires this.Valid();
{exists i :: 0 <= i < size && arr[i] == elem}

CHALMERS/GU

Specifying add

method Add(elem : int) returns (res :bool)

modifies this.arr, this size;

requires this.Valid(Q);

ensures Valid();

ensures (!old(contains(elem)) && old(size) < limit) ==

res &% contains(elem) && size == old(size)+1
&&
(forall e :: e'!=elem && old(contains(e)) ==>
contains(e));
ensures (old(contains(elem)) || old(size) >= limit) ==
lres && size == old(size) &&
forall i :: 0 <= i < size ==> arr[i] == old(
arr[il);
{/*...%/}

CHALMERS/GU

Details of Specification

» How much detail needed in formal specification?

» Depends (to some extent) on what we want to prove about
code.

» Recall: Dafny only "remembers” spec of method outside
method body.

CHALMERS/GU

Specifying Find

method Find(elem : int) returns (index : int)
requires Valid();

ensures 0 <= index ==> index < size && arr([index] == elem
ensures index < 0 ==> forall k :: 0 <= k < size ==
arr[k] !'= elem;

» Implemented using linear search (while loop).
» Dafny cannot prove post-condition!

» How many times do we go through the loop?
» Will it cover all elements?

» Solution: Loop invariants

CHALMERS/GU

Loops in Dafny

method m(i : nat) returns (z : nat)

{
z := 0;
while z < i { z :=z + 1; }

CHALMERS/GU

Introduction to Loop Invariants

In general, checking whether when the precondition holds then
the postcondition must hold is undecidable in a method with loops
(without extra information in the form of loop invariants)

Dafny cannot prove anything about loops without extra info
» No way of knowing how many times code will loop.

> Need to prove for all paths of program.

CHALMERS/GU

Introduction to Loop Invariants

A loop invariant is a property of a program loop that is true after
any number of iterations (including 0)

CHALMERS/GU

Introduction to Loop Invariants

A loop invariant is a property of a program loop that is true after
any number of iterations (including 0)
invariant == does not change
Loop invariant is expression which holds:
» First time entering loop
» At each iteration of loop

» When exiting the loop

CHALMERS/GU

Loop Invariant Example 1

method m (i : nat) returns (z
ensures z == i
{
z := 0;
while z < i
invariant 0 <= z
{z:=2+1; }
}

Dafny proves:
» Invariant holds when entering the loop.

» Invariant preserved by the loop.

: nat)

CHALMERS/GU

Loop Invariant Example 2

method m (i : nat) returmns (z
ensures z == i
{
z := 0;
while z < i
invariant 0 <= i <z
{z:=2z+1; }
}

Invariant is not preserved!

: nat)

» Dafny tries to prove that 0 <=/ < z holds after each

iteration.

» Holds for every execution except last one.

CHALMERS/GU

Picking a loop invariant

To be useful, a loop invariant must not only hold after any number
of iterations, but also must allow Dafny to prove the
postcondition.

method m (i : nat) returns (z : nat)

ensures z == i
z := 0;
while z < i
invariant z != i+1

{z:=2z+1; }
}
After a loop exits, Dafny knows:
» The loop invariant holds
» The loop guard does not hold
» Invariant considered in this example z! = i + 1 not useful to

prove post-condition.

CHALMERS/GU

Example: Revise invariant

method m (i : nat) returms (z : nat)
ensures z == i
{
z := 0;
while z < i
invariant z <= i
{z:=2z+1; }
}

Dafny proves:

» This invariant allows Dafny to prove the postcondition:
After the loop, the loop guard (z < i) failed. so I(z < i)
holds.

Also, we know that the loop invariant z </ holds.
((z<i)&& z<=1i)==>(z==1)

» Finding the correct invariant can be challenging.

CHALMERS/GU

Loop Invariants for Find method

method Find(elem : int) returns (index : int)
requires Valid();

ensures index < 0 ==> forall k :: 0<= k<size ==> arr[k]!=
elem;

ensures 0 <= index ==> index < size && arr[index] == elem
{

index := 0;

while (index < size)
invariant ?

{
if (arr[index] == elem) {return;}
index := index + 1;

}

index := -1;

> Dafny needs to know loop covers all elements.

» Everything before current index has been looked at and is not elem.

CHALMERS/GU

Loop Invariants for Find method

index := 0;
while (index < size)
invariant forall k :: O <= k < index ==> a[k] != elem
{
if (arr[index] == elem) {return;}
index := index + 1;
}
index := -1;

» Everything before, but excluding index is not elem.

» Holds on entry: as index is 0, quantification over empty set.
Implication trivially true.

» Invariant is preserved: tests value before extending range of
non-elem range.

> Dafny complains: index may be out of range of array. Need
invariant on index too.

CHALMERS/GU

Loop Invariants for Find method

index := 0;
while (index < size)
invariant forall k :: 0 <= k < index ==> alk] !'= elem
invariant O <= index <= size
{
if (arr[index] == elem) {return;}
index := index + 1;
}
index := -1;

> Holds on entry: as index is 0, quantification over empty set.
Implication trivially true.

» Invariant is preserved: tests value before extending range of
non-elem range.

> No array-out-of bound as k < index.

CHALMERS/GU

Termination

> We know is if we exit the loop, we can assume invariants and
negation of loop guard.
Invariant says nothing about whether loop actually ever exits.

Dafny needs to ensure that each loop terminates.
decreases clause:

» Expression gets smaller at each iteration
> Is bounded

» Often (but not always) integer value
» Dafny can often guess this itself

v

vy

Example

while (0 < i)
invariant 0 <= i;
decreases i;

{

i =1 -1;

RS/GU

Termination: Common pattern for decreases

Often count up, not down:
Example

while (i < n)
invariant 0 <= i <= n;
decreases (n - i);

{

i =1 +1;

» Difference between n and i decrease.
» Bounded from below by zero: 0 <= (n - 1i).

» Very common pattern, Dafny's guess in most situations.

CHALMERS/GU

Summary

» Framing: reads and modifies caluses. Important for
efficiency.

> Sets.
» Using quantifiers in specifications.
» Loops and loop invariant (more in coming lectures).

> Loop termination and decreases clauses.

CHALMERS/GU

	Recap
	Functions and Predicates
	Framing
	Sets
	First-Order in Specifications
	Loop Invariants
	Termination
	Summary

