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Data Structures

• Datatype

– A model of something that we want to represent in our 

program

• Data structure

– A particular way of storing data

– How? Depending on what we want to do with the data

• Today: Two examples

– Queues

– Tables



  

Using QuickCheck to Develop 

Fast Queue Operations

What we’re going to do:

•Explain what a queue is, and give slow implementations of 

the queue operations, to act as a specification.

•Give a fast implementation of the queue.

•Formulate properties that say the fast implementation is 

”correct”.

•Test them with QuickCheck.



  

What is a Queue?

Leave from

the front

Join at the back

Examples

• Files to print

• Processes to run

• Tasks to perform



  

What is a Queue?

A queue contains a sequence of values. We can add elements at the 

back, and remove elements from the front.

We’ll implement the following operations:

  empty    :: Q a

  add        :: a -> Q a -> Q a

  remove  :: Q a -> Q a

  front       :: Q a -> a

  isEmpty :: Q a -> Bool

  

-- an empty queue

-- add an element at the back

-- remove an element from the front

-- inspect the front element

-- check if the queue is empty



  

First Try

data Q a = Q [a] deriving (Eq, Show)

empty                    = Q []

add x (Q xs)          = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs))     = x

isEmpty (Q xs)     = null xs

new 

type

“Obiously” 

correct



  

Works, but slow

add x (Q xs) = Q (xs++[x])

[]        ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

add 1, add 2, add 3, add 4, add 5…

Time is the square of the number of additions

As many recursive 

calls as there are 

elements in xs



  

Abstract data types

• Useful to separate the queue interface from the implementation

• Interface:

empty    :: Q a

add        :: a -> Q a -> Q a

remove  :: Q a -> Q a

front       :: Q a -> a

isEmpty :: Q a -> Bool

• Implementation:

data Q a = …

      empty = ...

• Put the implementation in a module

• Allows programmers to switch implementation simply by 

changing imports



  

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty                    = Q []

add x (Q xs)          = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs))     = x

isEmpty (Q xs)     = null xs



  

New Idea: Store the Front and 

Back Separately

b c d e f g h ia jOld

Fast to

remove
Slow to add

b c d e

i h g f

a

j

New

Fast to add

Fast to 

remove Periodically

move the

back to the

front.



  

Fast Datatype

data Q a = Q [a] [a]

  deriving (Eq, Show)

The front and the back 

part of the queue.



  

Fast Operations

empty                                 = Q [] []

add x (Q front back)          = Q front (x:back)

remove (Q (x:front) back) = fixQ front back

front (Q (x:front) back)     = x

isEmpty (Q front back)     = null front && null back

Flip the queue when 

we serve the last 

person in the front



  

Smart Constructor

fixQ []      back = Q (reverse back) []

fixQ front back = Q front back

This takes one function call per element in the 

back – each element is inserted into the 

back (one call), flipped (one call), and 

removed from the front (one call)



  

How can we test the fast functions?

• By using the original implementation as a 

reference

• The behaviour should be ”the same”

– Check results

• First version is an abstract model that is 

”obviously correct”



  

Comparing the Implementations

• They operate on different types of queues

• To compare, must convert between them

– Can we convert a slow Q to a Q?

• Where should we split the front from the back???

– Can we convert a Q to a slow Q?

– Retrieve the simple ”model” contents from the 

implementation

contents (Q front back) = Q (front++reverse back)



  

Accessing modules

import qualified SlowQueue as Slow

contents :: Q Int -> Slow.Q Int

contents (Q front back) =

                        Slow.Q (front ++ reverse back)

Qualified name



  

The Properties

prop_empty =

     contents empty == Slow.empty

prop_add x q =

     contents (add x q) == Slow.add x (contents q)

prop_remove q =

     contents (remove q) == Slow.remove (contents q)

prop_front q = 

     front q == Slow.front (contents q)

prop_isEmpty q =

     isEmpty q == Slow.isEmpty (contents q)

The behaviour is 

the same, except 

for type 

conversion



  

Generating Qs

instance Arbitrary a => Arbitrary (Q a) where

  arbitrary = do front <- arbitrary

                         back <- arbitrary

                         return (Q front back)



  

A Bug!

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in 

function remove' (after 1 test):  

Q [] []



  

Preconditions

• A condition that must hold before a function is 

called

prop_remove q =

   not (isEmpty q) ==> 

   contents (remove q) == remove (contents q)

prop_front q =

   not (isEmpty q) ==> 

      front q == front (contents q)

• Useful to be precise about these



  

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42: 

Non-exhaustive patterns in function 

remove' (after 2 tests):  

Q [] [-1,0]

Another Bug!

But this ought not to happen!



  

An Invariant

• Q values ought never to have an empty 

front, and a non-empty back!

• Formulate an invariant

invariant (Q front back) =

    not (null front && not (null back))



  

Testing the Invariant

prop_invariant :: Q Int -> Bool

prop_invariant q = invariant q

• Of course, it fails…

Queues> quickCheck prop_invariant

Falsifiable, after 4 tests:

Q [] [-1]



  

Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where

  arbitrary = do front <- arbitrary

                         back <- arbitrary

                         return (Q front

                              (if null front then [] else back))

• Now prop_invariant passes the tests



  

Testing the Invariant

• We’ve written down the invariant

• We’ve made sure that we only generate 

valid Qs as test data

• We must ensure that the queue functions 

only build valid Q values!

– It is at this stage that the invariant is most 

useful



  

Invariant Properties

prop_empty_inv =

    invariant empty

prop_add_inv x q =

    invariant (add x q)

prop_remove_inv q =

    not (isEmpty q) ==> 

    invariant (remove q)



  

A Bug in the Q operations!

Queues> quickCheck prop_add_inv

Falsifiable, after 2 tests:

0

Q [] []

Queues> add 0 (Q [] [])

Q [] [0] The invariant is False!



  

Fixing add

add x (Q front back) = fixQ front (x:back)

• We must flip the queue when the first element 

is inserted into an empty queue

• Previous bugs were in our understanding (our 

properties) – this one is in our implementation 

code



  

Summary

• Data structures store data

• Obeying an invariant

• ... that functions and operations

– can make use of (to search faster)

– have to respect (to not break the invariant)

• Writing down and testing invariants and 

properties is a good way of finding errors



  

Another Datastructure: Tables

A table holds a collection of keys 

and associated values. 

For example, a phone book is a 

table whose keys are names, and 

whose values are telephone 

numbers.

Problem: Given a table and a key, 

find the associated value.

John Hughes

Hans Svensson

Koen Claessen

Mary Sheeran

1001

1079

1013

5424



  

Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a 

parameterised type:

type Table k v = [(k, v)]

lookup :: Eq k => k -> Table k v -> Maybe v

E.g. [(”x”,1), (”y”,2)] :: 

Table String Int

lookup ”y” …

      Just 2

lookup ”z” ... 

Nothing



  

Finding Keys Fast

Finding keys by searching from the beginning is slow!

A better method:

look somewhere in the 

middle, and then look 

backwards or forwards 

depending on what you 

find.

(This assumes the table is 

sorted).

Aaboen A

Nilsson Hans

Östvall Eva

Claessen?



  

Representing Tables

Aaboen A

Nilsson Hans

Östvall Eva

We must be able to break up a 

table fast, into:

•A smaller table of entries 

before the middle one,

•the middle entry,

•a table of entries after it.

data Table k v =

       Join (Table k v) k v (Table k v)



  

Quiz

What’s wrong with this (recursive) type?

data Table k v = Join (Table k v) k v (Table k v)



  

Quiz

What’s wrong with this (recursive) type? No base case!

data Table k v = Join (Table k v) k v (Table k v)

 |  Empty

Add a base case.



  

Looking Up a Key

To look up a key in a table:

•If the table is empty, then the key is not found.

•Compare the key with the key of the middle element.

•If they are equal, return the associated value.

•If the key is less than the key in the middle, look in the first 

half of the table.

•If the key is greater than the key in the middle, look in the 

second half of the table.



  

Quiz

Define

lookupT :: Ord k => k -> Table k v -> Maybe v

Recall

data Table k v = Join (Table k v) k v (Table k v)

 |  Empty



  

Quiz

Define

lookupT :: Ord k => k -> Table k v -> Maybe v

lookupT key Empty = Nothing

lookupT key (Join left k v right)

| key == k = Just v

| key < k = lookupT key left

| key > k = lookupT key right

Recursive type means

a recursive function!



  

Inserting a New Key

We also need a function to build tables. We define

insertT :: Ord k => k -> v -> Table k v -> Table k v

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place, so 

that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into 

the first or second half as appropriate.



  

Defining Insert

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) 

| key <= k = Join (insertT key val left) k v right

| key > k   = Join left k v (insertT key val right)

Many forget to join up the

new right half with the old

left half again.



  

Efficiency

On average, how many comparisons does it take to find a key 

in a table of 1000 entries, using a list and using the new 

method?

Using a list: 500

Using the new method: 10



  

Testing

• How should we test the Table operations?

– By comparison with the list operations

prop_lookupT k t = 

    lookupT k t == lookup k (contents t)

prop_insertT k v t = 

    contents (insertT k v t) == insert (k,v) (contents t)

contents :: Table k v -> [(k,v)]



  

Generating Random Tables

• Recursive types need recursive generators

instance (Arbitrary k, Arbitrary v) => 

Arbitrary (Table k v) where

We can generate arbitrary 

Tables...

...provided we can generate 

keys and values



  

Generating Random Tables

• Recursive types need recursive generators

instance (Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

arbitrary = oneof [ return Empty,

                        do k <- arbitrary

                                  v <- arbitrary

                                  left <- arbitrary

                          right <- arbitrary

                                  return (Join left k v right) ]

Quiz:

What is wrong with 

this generator?



  

Controlling the Size of Tables

• Generate tables with at most n elements

table s = frequency [(1, return Empty),

         (s, do k <- arbitrary

       v <- arbitrary

       l <- table (s `div` 2)

                                           r <- table (s `div` 2)

                   return (Join l k v r))]

instance (Arbitrary k, Arbitrary v) => 

Arbitrary (Table k v) where

    arbitrary = sized table



  

Testing Table Properties

Main> quickCheck prop_lookupT

Falsifiable, after 10 tests:

0

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2)  …)

[(2,-2),(0,0)]

prop_lookupT k t = lookupT k t == lookup k (contents t)

What’s wrong?



  

Tables must be Ordered!

• Tables should satisfy an important 

invariant.

prop_invTable :: Table Integer Integer -> Bool

prop_invTable t = ordered ks

    where ks = [k | (k,v) <- contents t]

Main> quickCheck prop_invTable

Falsifiable, after 4 tests:

Join Empty 3 3 (Join Empty 0 3 Empty) 



  

How to Generate Ordered Tables?

• Generate a random list,

– Take the first (key,value) to be at the root

– Take all the smaller keys to go in the left 

subtree

– Take all the larger keys to go in the right 

subtree



  

Converting a List to a Table

-- table kvs converts a list of key-value pairs into a Table

-- satisfying the ordering invariant

table :: Ord k => [(k,v)] -> Table k v

table []               = Empty

table ((k,v):kvs) = Join (table smaller) k v (table larger)

  where

   smaller = [(k',v') | (k',v') <- kvs, k' < k]

   larger   = [(k',v') | (k',v') <- kvs, k' > k]



  

Generating Ordered Tables

instance (Ord k, Arbitrary k, Arbitrary v) => 

Arbitrary (Table k v) where

    arbitrary = do kvs <- arbitrary

   return (table kvs)

Keys must have an 

ordering

List of keys 

and values



  

Testing the Properties

• Now the invariant holds, but the properties 

don’t!

Main> quickCheck prop_invTable

OK, passed 100 tests.

Main> quickCheck prop_lookupT

Falsifiable, after 7 tests:

-1

Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty 



  

More Testing

Main> quickCheck prop_insertT

Falsifiable, after 8 tests:

0

0

Join Empty 0 (-1) Empty

What’s 

wrong?

prop_insertT k v t = 

    insert (k,v) (contents t)

    == contents (insertT k v t)



  

The Bug

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key <= k = Join (insertT key val left) k v right

| key > k = Join left k v (insertT key val right)

Inserts duplicate keys!



  

The Fix

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key < k = Join (insertT key val left) k v right

    | key==k   = Join left k val right

| key > k = Join left k v (insertT key val right)

prop_invTable :: Table Integer Integer -> Bool

prop_invTable tab = ordered ks && ks == nub ks

    where ks = [k | (k,v) <- contents tab]

(and fix the table generator)



  

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty

 



  

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty 

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)

Join Empty (-2) 2 Empty 



  

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty 

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)

Join Empty (-2) 2 Empty 

Main> insert (-2,2) [(-2,1)]

[(-2,1),(-2,2)]

insert doesn’t remove the old 

key-value pair when keys 

clash – the wrong model!



  

Fixing prop_insertT

• Ad hoc fix:

prop_insertT k v t =

  insert (k,v) [(k',v') | (k',v') <- contents t, k' /= k] ==

     contents (insertT k v t)



  

Data.Map

• The standard module Data.Map contains an 

advanced tree-based implementation of 

tables



  

Summary

• Recursive datatypes can store data in different 

ways

• Clever choices of datatypes and algorithms 

can improve performance dramatically

• Careful thought about invariants is needed to 

get such algorithms right!

• Formulating properties and invariants, and 

testing them, reveals bugs early
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