

Datastructures

Data Structures

• Datatype

– A model of something that we want to represent in our

program

• Data structure

– A particular way of storing data

– How? Depending on what we want to do with the data

• Today: Two examples

– Queues

– Tables

Using QuickCheck to Develop

Fast Queue Operations

What we’re going to do:

•Explain what a queue is, and give slow implementations of

the queue operations, to act as a specification.

•Give a fast implementation of the queue.

•Formulate properties that say the fast implementation is

”correct”.

•Test them with QuickCheck.

What is a Queue?

Leave from

the front

Join at the back

Examples

• Files to print

• Processes to run

• Tasks to perform

What is a Queue?

A queue contains a sequence of values. We can add elements at the

back, and remove elements from the front.

We’ll implement the following operations:

 empty :: Q a

 add :: a -> Q a -> Q a

 remove :: Q a -> Q a

 front :: Q a -> a

 isEmpty :: Q a -> Bool

-- an empty queue

-- add an element at the back

-- remove an element from the front

-- inspect the front element

-- check if the queue is empty

First Try

data Q a = Q [a] deriving (Eq, Show)

empty = Q []

add x (Q xs) = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs)) = x

isEmpty (Q xs) = null xs

new

type

“Obiously”

correct

Works, but slow

add x (Q xs) = Q (xs++[x])

[] ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

add 1, add 2, add 3, add 4, add 5…

Time is the square of the number of additions

As many recursive

calls as there are

elements in xs

Abstract data types

• Useful to separate the queue interface from the implementation

• Interface:

empty :: Q a

add :: a -> Q a -> Q a

remove :: Q a -> Q a

front :: Q a -> a

isEmpty :: Q a -> Bool

• Implementation:

data Q a = …

 empty = ...

• Put the implementation in a module

• Allows programmers to switch implementation simply by

changing imports

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty = Q []

add x (Q xs) = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs)) = x

isEmpty (Q xs) = null xs

New Idea: Store the Front and

Back Separately

b c d e f g h ia jOld

Fast to

remove
Slow to add

b c d e

i h g f

a

j

New

Fast to add

Fast to

remove Periodically

move the

back to the

front.

Fast Datatype

data Q a = Q [a] [a]

 deriving (Eq, Show)

The front and the back

part of the queue.

Fast Operations

empty = Q [] []

add x (Q front back) = Q front (x:back)

remove (Q (x:front) back) = fixQ front back

front (Q (x:front) back) = x

isEmpty (Q front back) = null front && null back

Flip the queue when

we serve the last

person in the front

Smart Constructor

fixQ [] back = Q (reverse back) []

fixQ front back = Q front back

This takes one function call per element in the

back – each element is inserted into the

back (one call), flipped (one call), and

removed from the front (one call)

How can we test the fast functions?

• By using the original implementation as a

reference

• The behaviour should be ”the same”

– Check results

• First version is an abstract model that is

”obviously correct”

Comparing the Implementations

• They operate on different types of queues

• To compare, must convert between them

– Can we convert a slow Q to a Q?

• Where should we split the front from the back???

– Can we convert a Q to a slow Q?

– Retrieve the simple ”model” contents from the

implementation

contents (Q front back) = Q (front++reverse back)

Accessing modules

import qualified SlowQueue as Slow

contents :: Q Int -> Slow.Q Int

contents (Q front back) =

 Slow.Q (front ++ reverse back)

Qualified name

The Properties

prop_empty =

 contents empty == Slow.empty

prop_add x q =

 contents (add x q) == Slow.add x (contents q)

prop_remove q =

 contents (remove q) == Slow.remove (contents q)

prop_front q =

 front q == Slow.front (contents q)

prop_isEmpty q =

 isEmpty q == Slow.isEmpty (contents q)

The behaviour is

the same, except

for type

conversion

Generating Qs

instance Arbitrary a => Arbitrary (Q a) where

 arbitrary = do front <- arbitrary

 back <- arbitrary

 return (Q front back)

A Bug!

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in

function remove' (after 1 test):

Q [] []

Preconditions

• A condition that must hold before a function is

called

prop_remove q =

 not (isEmpty q) ==>

 contents (remove q) == remove (contents q)

prop_front q =

 not (isEmpty q) ==>

 front q == front (contents q)

• Useful to be precise about these

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42:

Non-exhaustive patterns in function

remove' (after 2 tests):

Q [] [-1,0]

Another Bug!

But this ought not to happen!

An Invariant

• Q values ought never to have an empty

front, and a non-empty back!

• Formulate an invariant

invariant (Q front back) =

 not (null front && not (null back))

Testing the Invariant

prop_invariant :: Q Int -> Bool

prop_invariant q = invariant q

• Of course, it fails…

Queues> quickCheck prop_invariant

Falsifiable, after 4 tests:

Q [] [-1]

Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where

 arbitrary = do front <- arbitrary

 back <- arbitrary

 return (Q front

 (if null front then [] else back))

• Now prop_invariant passes the tests

Testing the Invariant

• We’ve written down the invariant

• We’ve made sure that we only generate

valid Qs as test data

• We must ensure that the queue functions

only build valid Q values!

– It is at this stage that the invariant is most

useful

Invariant Properties

prop_empty_inv =

 invariant empty

prop_add_inv x q =

 invariant (add x q)

prop_remove_inv q =

 not (isEmpty q) ==>

 invariant (remove q)

A Bug in the Q operations!

Queues> quickCheck prop_add_inv

Falsifiable, after 2 tests:

0

Q [] []

Queues> add 0 (Q [] [])

Q [] [0] The invariant is False!

Fixing add

add x (Q front back) = fixQ front (x:back)

• We must flip the queue when the first element

is inserted into an empty queue

• Previous bugs were in our understanding (our

properties) – this one is in our implementation

code

Summary

• Data structures store data

• Obeying an invariant

• ... that functions and operations

– can make use of (to search faster)

– have to respect (to not break the invariant)

• Writing down and testing invariants and

properties is a good way of finding errors

Another Datastructure: Tables

A table holds a collection of keys

and associated values.

For example, a phone book is a

table whose keys are names, and

whose values are telephone

numbers.

Problem: Given a table and a key,

find the associated value.

John Hughes

Hans Svensson

Koen Claessen

Mary Sheeran

1001

1079

1013

5424

Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a

parameterised type:

type Table k v = [(k, v)]

lookup :: Eq k => k -> Table k v -> Maybe v

E.g. [(”x”,1), (”y”,2)] ::

Table String Int

lookup ”y” …

 Just 2

lookup ”z” ...

Nothing

Finding Keys Fast

Finding keys by searching from the beginning is slow!

A better method:

look somewhere in the

middle, and then look

backwards or forwards

depending on what you

find.

(This assumes the table is

sorted).

Aaboen A

Nilsson Hans

Östvall Eva

Claessen?

Representing Tables

Aaboen A

Nilsson Hans

Östvall Eva

We must be able to break up a

table fast, into:

•A smaller table of entries

before the middle one,

•the middle entry,

•a table of entries after it.

data Table k v =

 Join (Table k v) k v (Table k v)

Quiz

What’s wrong with this (recursive) type?

data Table k v = Join (Table k v) k v (Table k v)

Quiz

What’s wrong with this (recursive) type? No base case!

data Table k v = Join (Table k v) k v (Table k v)

 | Empty

Add a base case.

Looking Up a Key

To look up a key in a table:

•If the table is empty, then the key is not found.

•Compare the key with the key of the middle element.

•If they are equal, return the associated value.

•If the key is less than the key in the middle, look in the first

half of the table.

•If the key is greater than the key in the middle, look in the

second half of the table.

Quiz

Define

lookupT :: Ord k => k -> Table k v -> Maybe v

Recall

data Table k v = Join (Table k v) k v (Table k v)

 | Empty

Quiz

Define

lookupT :: Ord k => k -> Table k v -> Maybe v

lookupT key Empty = Nothing

lookupT key (Join left k v right)

| key == k = Just v

| key < k = lookupT key left

| key > k = lookupT key right

Recursive type means

a recursive function!

Inserting a New Key

We also need a function to build tables. We define

insertT :: Ord k => k -> v -> Table k v -> Table k v

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place, so

that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into

the first or second half as appropriate.

Defining Insert

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right)

| key <= k = Join (insertT key val left) k v right

| key > k = Join left k v (insertT key val right)

Many forget to join up the

new right half with the old

left half again.

Efficiency

On average, how many comparisons does it take to find a key

in a table of 1000 entries, using a list and using the new

method?

Using a list: 500

Using the new method: 10

Testing

• How should we test the Table operations?

– By comparison with the list operations

prop_lookupT k t =

 lookupT k t == lookup k (contents t)

prop_insertT k v t =

 contents (insertT k v t) == insert (k,v) (contents t)

contents :: Table k v -> [(k,v)]

Generating Random Tables

• Recursive types need recursive generators

instance (Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

We can generate arbitrary

Tables...

...provided we can generate

keys and values

Generating Random Tables

• Recursive types need recursive generators

instance (Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

arbitrary = oneof [return Empty,

 do k <- arbitrary

 v <- arbitrary

 left <- arbitrary

 right <- arbitrary

 return (Join left k v right)]

Quiz:

What is wrong with

this generator?

Controlling the Size of Tables

• Generate tables with at most n elements

table s = frequency [(1, return Empty),

 (s, do k <- arbitrary

 v <- arbitrary

 l <- table (s `div` 2)

 r <- table (s `div` 2)

 return (Join l k v r))]

instance (Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

 arbitrary = sized table

Testing Table Properties

Main> quickCheck prop_lookupT

Falsifiable, after 10 tests:

0

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2) …)

[(2,-2),(0,0)]

prop_lookupT k t = lookupT k t == lookup k (contents t)

What’s wrong?

Tables must be Ordered!

• Tables should satisfy an important

invariant.

prop_invTable :: Table Integer Integer -> Bool

prop_invTable t = ordered ks

 where ks = [k | (k,v) <- contents t]

Main> quickCheck prop_invTable

Falsifiable, after 4 tests:

Join Empty 3 3 (Join Empty 0 3 Empty)

How to Generate Ordered Tables?

• Generate a random list,

– Take the first (key,value) to be at the root

– Take all the smaller keys to go in the left

subtree

– Take all the larger keys to go in the right

subtree

Converting a List to a Table

-- table kvs converts a list of key-value pairs into a Table

-- satisfying the ordering invariant

table :: Ord k => [(k,v)] -> Table k v

table [] = Empty

table ((k,v):kvs) = Join (table smaller) k v (table larger)

 where

 smaller = [(k',v') | (k',v') <- kvs, k' < k]

 larger = [(k',v') | (k',v') <- kvs, k' > k]

Generating Ordered Tables

instance (Ord k, Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

 arbitrary = do kvs <- arbitrary

 return (table kvs)

Keys must have an

ordering

List of keys

and values

Testing the Properties

• Now the invariant holds, but the properties

don’t!

Main> quickCheck prop_invTable

OK, passed 100 tests.

Main> quickCheck prop_lookupT

Falsifiable, after 7 tests:

-1

Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty

More Testing

Main> quickCheck prop_insertT

Falsifiable, after 8 tests:

0

0

Join Empty 0 (-1) Empty

What’s

wrong?

prop_insertT k v t =

 insert (k,v) (contents t)

 == contents (insertT k v t)

The Bug

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key <= k = Join (insertT key val left) k v right

| key > k = Join left k v (insertT key val right)

Inserts duplicate keys!

The Fix

insertT key val Empty = Join Empty key val Empty

insertT key val (Join left k v right) =

| key < k = Join (insertT key val left) k v right

 | key==k = Join left k val right

| key > k = Join left k v (insertT key val right)

prop_invTable :: Table Integer Integer -> Bool

prop_invTable tab = ordered ks && ks == nub ks

 where ks = [k | (k,v) <- contents tab]

(and fix the table generator)

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)

Join Empty (-2) 2 Empty

Testing Again

Main> quickCheck prop_insertT

Falsifiable, after 6 tests:

-2

2

Join Empty (-2) 1 Empty

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)

Join Empty (-2) 2 Empty

Main> insert (-2,2) [(-2,1)]

[(-2,1),(-2,2)]

insert doesn’t remove the old

key-value pair when keys

clash – the wrong model!

Fixing prop_insertT

• Ad hoc fix:

prop_insertT k v t =

 insert (k,v) [(k',v') | (k',v') <- contents t, k' /= k] ==

 contents (insertT k v t)

Data.Map

• The standard module Data.Map contains an

advanced tree-based implementation of

tables

Summary

• Recursive datatypes can store data in different

ways

• Clever choices of datatypes and algorithms

can improve performance dramatically

• Careful thought about invariants is needed to

get such algorithms right!

• Formulating properties and invariants, and

testing them, reveals bugs early

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 56
	Sida 57
	Sida 58
	Sida 59
	Sida 60

