Test Data Qenerators

Based on original slides by Koen Claessen and John Hughes

A recap: Instructions

Instructions to the }

* A new built-in type gOperating System
—10 a
' - is the "em uple”
» Standard functions: Z{Qr]sotmiereest%t ple }
—putStr :: String -> 10 () contents

—readFile :: FilePath -> 10 String
— writeFile :: FilePath -> String -=> 10 ()

An example

Recall putStr :: String -> IO0()
What happens with this expression:

last [putStr ”apa”, putStr ’bepa”™, putStr ”cepa”]

Repeating Instructions

doTwice 10 = e _ _ ~
do a <- io <~ Aninstruction to
b <- io Lcompute the given
return (a,b) result Y
dont io =
return ()

Main> doTwice (print "hello”)

"Ee::o" Writing instructions and obeying
N them are two different things!

((),0))
Main> dont (print "hello”)

Why Distinguish Instructions?

* Functions always give the same result for
the same arguments

* Instructions can behave differently on
different occasions

» Confusing them (as in most programming
languages) is a major source of bugs

— This concept a major breakthrough in
programming languages in the 1990s

— How would you write doTwice in C?

Instructions are in the Monad
Gang
* What is the type of doTwice?

Main> :1 doTwice

doTwice :: Monad a =>a b -> a (b,b)
\ﬂ fWhatever kind of\
a4 Even the kind of result argument
instructions can vary! produces, we get
Different kinds of __apair of them
instructions, depending on | |0 means operating

____Whoobeysthem. / gystem.

QuickCheck Instructions

* QuickCheck can perform random testing
with values of any type which is in class

Arbitrary

* For any type T in Arbitrary there is a
random value generator, Gen T

 Gen is a Monad — so things of type Gen T
are another kind of “instruction”

|O vs Gen

IOT
!

Instructions to build a
value of type T by
interacting with the
operating system

Run by the ghc runtime
system

Gen T
|

* |nstructions to create a
random value of type T

* Run by the QuickCheck
library functions to
perform random tests

Instructions for Test Data
Generation

* Generate different test data every time

— Hence need "instructions to generate an a”
— Instructions to QuickCheck, not the OS
—Gena=10a

» Generating data of different types?

QuickCheck> :1 Arbitrary

-- type class

class Arbitrary a where
arbitrary :: Gen a

Sampling

To inspect generators QuickCheck provides
sample :: Gena -> 10 ()

Say WhiCh\
type we
Sample> sample (arbitrary :: Gen Integer want to
1 generate Y
0
5 Prints (fairly small) test
14 data QuickCheck might
-3

generate

Sampling Booleans

Sample> sample (arbitrary :: Gen Bool)
True
False
True
True
True

* Note: the definition of sample is not
important here — it is just a way for
QuickCheck users to “inspect” something
of type Gen a.

Sampling Doubles

Sample> sample (arbitrary :: Gen Double)
-5.75

-1.75

2.16666666666667

1.0

-9.25

Sampling Lists

Sample> sample (arbitrary :: Gen [Integer])
-15,-12,7,-13,6,-6,-2,4]

3,-2,0,-2,1]

]
-11,14,2,8,-10,-8,-7,-12,-13,14,15,15,11,7]
-4,10,18,8,14]

Writing Generators

* We build generators in the same way we
build other instructions (like 10): using
exiting generators, return and do:
Sample> sample (return True)

True
True
True
True
True

Writing Generators

* Write instructions using do and return:
Main> sample (doTwice (arbitrary :: Gen Integer))

5,5) g It s important that the A

instructions are followed

(

(

(-1,-9) twice, to generate two
(4,2) different values. y
(13,-6)

Writing Generators

* Write instructions using do and return:
Main> sample evenlinteger

-32
6 evenlnteger :: Gen Integer
0 eveninteger =

do n <- arbitrary
4 return (2*n)

0

Generation Library

* QuickCheck provides many functions for
constructing generators

Main> sample (choose (1,10) :: Gen Integer)
6

/

10

6

10

Generation Library

* QuickCheck provides many functions for
constructing generators

Main> sample (oneof [return 1, return 10])

10 oneof :: [Gen a] -> Gen a

Generating a Suit

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show,Eq)

Main> sample rSuit rSu!t :: Gen Suit
rSuit = oneof [return Spades,

Spades
return Hearts,
Hearts .
_ return Diamonds,
Diamonds

return Clubs]

Diamonds
Clubs { QuickCheck chooses one set }

of instructions from the list

Generating a Suit

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show,Eq)

Alternative rSuit :: Gen Suit
definition: rSuit = elements [Spades,
| Hearts,
. . Diamonds,
Quiz: define Clubs]

elements using
oneof { QuickCheck chooses one of }

the elements from the list

Generating a Rank

data Rank = Numeric Integer
| Jack | Queen | King | Ace
deriving (Show,Eq)

rRank = oneof [return Jack,
return Queen,

Main> sample rRank return King,

mﬂmgﬁig g return Ace,

Numeric 3 do r <- choose (2,10)
Queen return (Numeric r)]

King

Generating a Card

data Card = Card Rank Suit
deriving (Show,EQq)

Main> sample rCard
Card Ace Hearts
Card King Diamonds
Card Queen Clubs
Card Ace Hearts
Card Queen Clubs

rCard =
do r <- rRank
S <- rSuit
return (Card r s)

Generating a Hand

type Hand = [Cards]

If we tell quickCheck how to generate Cards then it will
automatically knows how to generate a list of cards.

Disadvantage: we cannot control it (hands with 100 cards
possible)

Generating a Deck

data Deck = Deck {cards :: [Card]}
deriving (Eq, Show)

rDeck = do ¢cs <- 1listOf rCard
return (Deck (nub cs))

f Data.List.nub removes A

duplicates from the list. What
property does that give us?

Making QuickCheck Use Our
Generators

* QuickCheck can generate any type which is a
member of class Arbitrary:

Main> :1 Arbitrary
-- type class
class Arbitrary a where

~
This tells QuickCheck

(how to generate

arbitrary :: Gen a
shrink ::a -> [a]
-- instances:
instance Arbitrary ()
instance Arbitrary Bool
instance Arbitrary Int

\

Y values

)

This helps QuickCheck
find small counter-
examples (we won't be
using this)

~

/

Making QuickCheck Use Our
Generators

« QuickCheck can generate any type of
class Arbitrary

* S0 we have to make our types instances
of this class
/I\/Iake a\ ...of this class... } E...for this type...}

new \

kinstance ' linstance Arbitrary Suit where
arbitrary = rSuit

—

[...where this method... } [...Is defined like this. J

Datatype Invariants

* We design types to model our problem —
but rarely perfectly

— Numeric (-3) ?7?

* Only certain values are valid

validRank :: Rank -> Bool
validRank (Numeric r) = 2<=r && r<=10
validRank = True

* This is called the datatype invariant —
should always be True

Testing Datatype Invariants

* Generators should only produce values
satisfying the datatype invariant:

prop_Rank r = validRank r

« Stating the datatype invariant helps us
understand the program, avoid bugs

* Testing it helps uncover errors in test data

generators!
Testing-code needs testing too!

Test Data Distribution

 \We don’t see the test cases when
quickCheck succeeds

* Important to know what kind of test data is
being used

prop Rank r = collect r (validRank r)
7

- R
This property means the same as

validRank r, but when tested,
N collects the values of r)

Distribution of Ranks

Main> quickCheck prop Rank
OK, passed 100 tests.

~

26% King. / We see a summary,
(0]]]
fg éa Sluekeﬂ- L showing how often
o JACK.
17% Ace each value occured

\
Face cards occur much

more frequently than
numeric cards!)

7% Numeric 9.
2% Numeric 7.
1% Numeric 8.
1% Numeric 6.
1% Numeric 5.
1% Numeric 2.

L

Fixing the Generator

rRank = frequency
[(4,elements [Jack, Queen, King, Ace]),
(9, do r <- choose (2,10)
return (Numeric r))]

Each alternative is paired with a weight
determining how often it is chosen.

Choose number cards 9 to 4 ratio.

Datatype Invariant?

prop_Deck d = collect (length (cards d)) True

We’'re not testing any

particular property of

Decks, just inspecting
k the distribution

J

* Are there properties that every deck
should have?

Datatype Invariant?

prop_Deck d = collect len (len <= 52)
where len = length (cards d)

Testing Algorithms

Testing insert

* Insert x xs—inserts x at the right place in
an ordered list

Main> insert 3 [1..5]
[1,2,3,3,4,5]
* The result should always be ordered

prop_insert :: Integer -> [Integer] -> Bool
prop_insert x xs = ordered (insert x xs)

Testing insert

Main> quickCheck prop insert
Falsifiable, after 2 tests:

N
3 Of course, the result won’ t be
[0,1,-1] ordered unless the input is

)

prop _insert :: Integer -> [Integer] -> Property
prop_insert x xs =
ordered xs ==> ordered (insert x xs)

~

[Testing succeeds, but... }

Testing insert

 Let's observe the test data...

prop _insert :: Integer -> [Integer] -> Property
prop_insert x xs =

collect (length xs) $
ordered xs ==> ordered (insert x xs)

Main> quickCheck prop insert

OK, passWﬁ

41% 0. Why so short??? }
38% 1. t

14% 2.

6% 3.

1% S.

What' s the Probability a Random
List is Ordered?

Length (Ordered?

0 100%

1 100%
50%
17%
4%

S G B VS I N\

Generating Ordered Lists

* Generating random lists and choosing
ordered ones is silly

» Better to generate ordered lists to begin
with—but how?

* One idea:

— Choose a number for the first element

— Choose a positive number to add to it for the
next

— And so on

The Ordered List Generator

orderedList :: Gen [Integer]
orderedList =
do n <- arbitrary
listFrom n
where listFrom n =
frequency
[(1, return []),
(5, do i <- arbitrary
ns <- listFrom (n + abs 1)
return (n:ns))]

Trying it

Main> sample orderedList
10,21,29,31,40,49,54,55]
3,9,9,7,10]

0,1,2]
7,7,11,19,28,36,42,51,61]

]

Making QuickCheck use a Custom
Generator
« Can’ t redefine arbitrary: the type doesn’ t
say we should use orderedList

 Make a new type [A new type }

V
data OrderedList = Ordered [Integer]

with a datatype
iInvariant

Making QuickCheck use a Custom
Generator

 Make a new type

data OrderedList = Ordered [Integer]
deriving Show

* Make an instance of Arbitrary

instance Arbitrary OrderedList where
arbitrary =
do xs <- orderedList
return (Ordered xs)

Testing insert Correctly

prop_insert :: Integer -> OrderedList -> Bool

prop_insert x (Ordered xs) =
ordered (insert X Xxs)

Main> quickCheck prop insert
OK, passed 100 tests.

Collecting Data

prop_insert x (Ordered xs) =
collect (length xs) $
ordered (insert x xs)

Main> quickCheck prop insert

OK, passed 100 tests.

17% 1. (Wide variety of Iengths}
16% O.

12% 3.
12% 2....

N

Summary

* We have seen how to generate test data
for quickCheck

— Custom datatypes (Card etc)
— Custom invariants (ordered lists)
 Seen that IO A and Gen A are members

of the Monad class (the class of
“Instructions”)

 Later: how to create our own

“Instructions” (i.e. creating an instance of
Monad)

Reading

* About IO and do notation: Chapter 9 of
Learn You a Haskell

« About QuickCheck: read the manual linked
from the course web page.

— There are also several research papers about
QuickCheck, and advanced tutorial articles.

— Real World Haskell, Thompson (3rd edition)

