
Chalmers University of Technology

Objektorienterad programmering

Lecture 8: dynamic lists, testing and error handling

Dr. Alex Gerdes | Dr. Carlo A. Furia

SP1 2017/18

• Reading and writing (text) files

• Multidimensional arrays

• Introduction to dynamic lists with ArrayList

In the previous lecture 7

Dynamic lists: ArrayList

• An array is a static data structure, whose size is fixed upon creation

and cannot be changed while the program executes. In some

applications, we may not know the size of the data when the program

starts, and thus we need dynamic data structures, whose size can

grow and shrink as the program needs.

• We could “simulate” a dynamic structure using an array, for example:

- Create an array that is as large as the maximum data size

- Keep track of how which elements are actually added to the array

- To add an element: use an empty slot

- To remove an element: mark a slot as empty

• Class ArrayList is a library class that provides a flexible

implementation of dynamic list data structure. Whenever we need

dynamic data management, it’s usually much simpler to use
ArrayList instead of (monodimensional) arrays

• ArrayList is in package java.util

Class ArrayList

• Clarr ArrayList is generic.This means that we can create

lists of elements of any type (like for arrays). When we

declare a variable of type ArrayList, we also declare the type

of its elements. Examples:

ArrayList<String> words = new ArrayList<String>();

ArrayList<Integer> values = new ArrayList<Integer>();

ArrayList<BigInteger> bigValues =

new ArrayList<BigInteger>();

ArrayList<Person> members = new ArrayList<Person>();

• ArrayList can only store object/reference types, not

primitive types (such as int, double, boolean and char)

• When we need a list with elements of a primitive type, we

use its corresponding wrapper type instead

Class ArrayList

Class ArrayList<E>

Operation Description

ArrayList<E>() Create an empty ArrayList for elements of type E

void add(E elem)
Add elem as last element of the list (after all other

elements)

void add(int pos, E elem)
Insert elem at position pos in the list, shifting all

other elements at the insertion point to the right

… …

E get(int pos) Return element at position pos

E set(int pos, E elem) Replace the element currently at pos with elem

E remove(int pos)
Remove the element at position pos, shifting all

other elements at the removal point to the left

Class ArrayList<E>

Operation Description

int size() Return the number of elements in the list

boolean isEmpty()
Return true if the list is empty, otherwise

return false

int indexOf(Object elem)
Return the position (index) of elem in the

list; if elem is not in the list, return -1

boolean contains(Object elem)
Return true of elem is in the list,

otherwise return false

void clear() Remove all elements in the list

String toString()
Return a textual representation of the list

content in the form [e1, e2, . . . , en]

Methods indexOf and contains compare elem to the elements in the list using a method
public boolean equals(Object obj)

which must be defined for the class E. All standard classes such as String, Integer

and Double, include a definition of equals.

• We can often mix primitive types and their corresponding

wrapper types thanks to autoboxing and autounboxing

• Integer talObjekt = new Integer(10);

// without autoboxing

...

int tal = talObjekt.toValue();

// without autounboxing

Equivalently, and more simply:

Integer talObjekt = 10; // autoboxing

...

int tal = talObjekt; // auto-unboxing

Autoboxing and autounboxing

• A special form of the for loop is convenient to loop over every element

of an array, or of a list like ArrayList

For loop over collections (for each)

double[] values = new double[100];

ArrayList<String> listan = new ArrayList<String>();

// For loops with explicit index

for (int index = 0; index < values.length; index = index +1) {

System.out.println(values[index]);

}

for (int pos = 0; pos < listan.size(); pos = pos +1) {

System.out.println(listan.get(pos));

}

// For loops with “for each”

for (double v : values) // for each v in values

System.out.println(v);

for (String str : listan) // for each str in listan

System.out.println(str);

• Write a method with signature

private static ArrayList<Integer> readSet()

that reads integers in any order, and returns a list where all read integers

appear exactly once:

• If an element is read multiple times, it appears only once in the output

• If an element is read once, it appears once in the output

• If an element is not read, it does not appear in the output

• Example: input integers

1, 4, 1, 2, 4, 5, 12, 3, 2, 4, 1

output list:

1, 4, 2, 5, 12, 3

Example: read a set of numbers

• Algorithm:

1. while (there are more integers)

1. Read the next number

2. if (the number is not already in the output list)
add the number to the list;

2. Return the output list

Analysis and implementation

public static ArrayList<Integer> readSet() {

ArrayList<Integer> set = new ArrayList<Integer>();

Scanner in = new Scanner(System.in);

while (in.hasNextInt()) {

int value = in.nextInt();

if (!set.contains(value)) {

set.add(value);

}

}

return set;

}

Class PhoneBook implemented with arrays

public class Entry {

private String name;

private String number;

public Entry(String name, String number) {

this.name = name;

this.number = number;

}

public String getName() {

return name;

}

public String getNumber() {

return number;

}

}

public class PhoneBook {

private Entry[] book;

private int count;

public PhoneBook(int size) {

book = new Entry[size];

count = 0;

}

public void put(String name, String nr) {

book[count] = new Entry(name, nr);

count = count + 1;

}

public String get(String name) {

String res = null;

for (int i = 0; i < count; i = i +1)

if (name.equals(book[i].getName()))

res = book[i].getNumber();

return res;

}

}

Maximum

number

of entries Actual

number of

stored

elements

Runtime

error

if count >=

size

Class PhoneBook implemented with ArrayList

public class Entry {

private String name;

private String number;

public Entry(String name, String number) {

this.name = name;

this.number = number;

}

public String getName() {

return name;

}

public String getNumber() {

return number;

}

}

import java.util.ArrayList;

public class PhoneBook {

private ArrayList<Entry> book = new ArrayList<Entry>();

public void put(String name, String nr) {

book.add(new Entry(name, nr));

}

public String get(String name) {

String res = null;

for (Entry e : book)

if (name.equals(e.getName()))

res = e.getNumber();

return res;

}

}

Shorthand operators

• Shorthand operators are more concise forms of assignments

• There are shorthand operators for increment and decrement,

each in prefix and postfix version

Shorthand operators

Shorthand Full form

++x x + 1

--x x - 1

x++ x + 1

x-- x - 1

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

• The difference between the prefix and postfix operators is when the increment or

decrement is executed within an expression

• With the prefix operators, the increment/decrement occurs first, and then the whole

expression is evaluated:

firstNumber = 10;

secondNumber = ++firstNumber;

In the end, firstNumber == secondNumber == 11

• With the prostfix operators, the whole expression is evaluated first, and then the

increment/decrement occurs (without affecting the value of the expression)

firstNumber = 10;

secondNumber = firstNumber++;

In the end, secondNumber == 10 and firstNumber == 11

The most common, and simple, usage of the prefix/postfix operators is as stand-alone

statements:
++firstNumber; firstNumber++;

• The behavior of complex combinations of pre- and postfix operators can be quite

tricky. Rule of thumb: only use them in simple expressions!

Shorthand operators

Testing

• How do we know if our

program works correctly?

By testing it!

• The modular design of

programs (decomposition

into methods) helps testing:

• ideally, we can test each

method independent of

the others

What is testing?

import javax.swing.*;

public class Postage {

public static void main(String[] args) {

String input =

JOptionPane.showInputDialog(“Weight:");

double weight = Double.parseDouble(input);

String output;

if (weight <= 0.0)

output = “Weight must be positive!";

else if (weight <= 20.0)

output = “Postage is 5.50 kronor.";

else if (weight <= 100.0)

output = “Postage is 11.00 kronor.";

else if (weight <= 250.0)

output = " Postage is 22.00 kronor.";

else if (weight <= 500.0)

output = "Postage is 33.00 kronor.";

else

output = “Too heavy: use a packet.";

JOptionPane.showMessageDialog(null, output);

}

}

Modular design of Postage

import javax.swing.*;

public class Postage {

public static void main(String[] args) {

String input = JOptionPane.showInputDialog("Weight:");

double weight = Double.parseDouble(input);

JOptionPane.showMessageDialog(null, getPostage(weight));

}

public static String getPostage(double weight) {

String res;

if (weight <= 0.0)

res = "Weight must be positive!";

else if (weight <= 20.0)

res = "Postage is 5.50 kronor.";

else if (weight <= 100.0)

res = "Postage is 11.00 kronor.";

else if (weight <= 250.0)

res = "Postage is 22.00 kronor.";

else if (weight <= 500.0)

res = "Postage is 33.00 kronor.";

else

res = “Too heavy: use a packet.";

return res;

}

}

When do program errors show up?

- At compile time (static errors):

- the Java compiler checks that certain correctness rules are
followed everywhere in a program: types are used correctly,
functions return values, variables are initialized before being
used, ...

- thus, the compiler guarantees that certain kinds of errors
cannot occur (the program won’t compile until we fix those
errors)

- At runtime (dynamic errors):

- exceptions: something unexpected happens, which the
program cannot handle correctly: a file is missing, the
network is down, etc.

- functional/logical errors: the program runs without apparent
failure, but it does not do what it is supposed to do: a sorting
program does not correctly sort the input, it writes an empty
file, etc.

Kinds of errors: static vs. dynamic

- Failure:

- the program does not behave as expected: it returns the
wrong output, crashes, or does not terminate

- Fault:

- a program condition (state) that will cause a failure: the
wrong if branch is entered, an array’s bounds are incorrectly
computed, etc.

- Mistake:

- a programmer produces the wrong code, which will
determine a fault

- Error or bug:

- more informal terms, which can mean any of the above

Kinds of errors: failure, fault, mistake

• Testing is a fundamental practice to reduce the number of errors in

programs

• What can be discovered by testing and what can be discovered by

static checks (the compiler) depends to some extent on the

features of the programming language we’re using

• e.g. Java vs. Python

• The main goal of testing is finding errors (“bugs”): testing cannot

establish that there are no more errors left!

• Effective testing requires that we know what a program is supposed

to do (the program’s specification). This typically comes from the

problem analysis phase of programming.

What can we test?

Programming phases

Algorithm

Validation

Problem specification

Problem analysis

Testing

Coding: implement the

algorithm as a program

Implementation

Working

program

Problem

• As soon as possible!

• The later we detect an error, the harder it is to fix

• If the algorithm is correct, we rule out logical

errors, which are usually the hardest to detect

and fix

• If an error detected by testing a program turns out

to be due to an error in the specification/algorithm,

we may have to go back to the program analysis

phase

When to test?

• In black-box testing, we only look at the input/output

behavior of each method or program, ignoring the internal

details of the code implementing the method.

• In white-box testing, we choose inputs in a way that

explores as many portions of the code implementing the

method we are testing as possible.

Black-box vs. white-box testing

Compare output

to expected output.
Method

Input Output

Compare output

to expected output.

Method

Input

Output

• A heuristics is a rule of thumb, which often works

well in practice but is not guaranteed to succeed

• A useful heuristics for testing a method:

• partition the method’s inputs into a finite number

of classes

• according to the program logic

• according to the program structure

• pick (at least) a concrete input in each class, and

test the method with that input

Testing heuristics

• We are testing a program that determines if a person can

vote or not given their age

• An obvious partition of the input is in two classes:

• In addition, we want to test for invalid inputs (negative age)

• Concrete test inputs that we try:

Test nr Input Expected output
1 12 Cannot vote

2 24 Can vote

3 -7 Invalid input

4 0 Cannot vote

5 17 Cannot vote

6 18 Can vote

7 -1 Invalid input

Example of partition testing

0 17 18 ...

Testing boundary

values between

classes is often

useful to check

corner cases!

Testing of Postage

public class TestPostage {

public static void main(String[] args) {

boolean res =

testPostage(0, "Weight must be positive!") &&

testPostage(0.5, "Postage is 5.50 kronor.") &&

testPostage(20.0, "Postage is 5.50 kronor.") &&

testPostage(20.5, "Postage is 11.00 kronor.") &&

testPostage(100.0, "Postage is 11.00 kronor.") &&

testPostage(100.5, "Postage is 22.00 kronor.") &&

testPostage(250.0, "Postage is 22.00 kronor.") &&

testPostage(250.5, "Postage is 33.00 kronor.") &&

testPostage(500.0, "Postage is 33.00 kronor.") &&

testPostage(500.5, "Too heavy: use a packet.");

if (res) System.out.println(" All tests passed!");

}

public static boolean testPostage(double weight, String expected) {

String result = Postage.getPostage(weight);

boolean passed = expected.equals(result);

if (passed)

System.out.print(".");

else {

System.out.println("Error with weight: " + weight);

System.out.println("Expected output: " + expected);

System.out.println("Program output: " + result);

}

return passed;

}

}

• Testing of a complex, large program is done in phases:

• unit testing: test the individual units (such as individual

methods and classes)

• system/integration testing: test the whole system where

units are connected to achieve an overall functionality

• Development and testing of a large program can be:

• bottom-up: start developing and testing individual

components, and combine them in increasingly more

complex units

• top-down: start designing the overall system and test

how its components interact before fully developing the

components. Add details until every component is

complete

Unit testing vs. system testing

Exceptions (undantag)

• The exceptional behavior of a program is when

unexpected conditions occurr during execution (at

runtime) that make it impossible to continue

• One example:
out of bound access ar[ar.length + 3]

• In Java programs, exceptional behavior is

signaled by objects of specific classes called

exceptions (or exception objects)

• Exception handling code is the part of a program

that deals with exceptions – for example trying to

execute some backup actions

Exceptional behavior

• Possible sources of exceptional behavior

- Code problems that are not checked by the compiler: an
object is null, an array is accessed outside its bounds, a
method is called with invalid arguments...

- These are really programming errors

- Problems with accessing resources: the network is
down, a file is missing, we are out of memory, the CD is
not inserted in the reader...

- These are not real errors but more like unexpected
conditions: the best the program can do is trying
again

Sources of exceptional behavior

• If we type a string that cannot be interpreted as integer
(such as 12.4 or "help"), parseInt() throws an

exception that makes the whole program fail:

Exceptional behavior: example

import javax.swing.*;

public class Square {

public static void main (String[] args) {

String indata = JOptionPane.showInputDialog("Type an integer:");

int tal = Integer.parseInt(indata);

int res = tal * tal;

JOptionPane.showMessageDialog(null, "The square is " + res);

}

}

Exception in thread "main" java.lang.NumberFormatException: For input string: "12.4"

at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:458)

at java.lang.Integer.parseInt(Integer.java:499)

at Square.main(Square.java:5)

• Some common exception classes in Java, and what they are

used for:

- ArrayIndexOutOfBoundsException

‣ The program tried to access an array a at an invalid index
(negative or greater than a.length - 1)

- NullPointerException

‣ An object reference has the default value null, which does not
correspond to a valid object

- NumberFormatException

‣ The input cannot be interpreted as a number of the right type

- IllegalArgumentException

‣ A method is called with an argument value that is not allowed by
the method’s specification (for example, computing the maximum
of an empty list).

Exception classes in Java

There are two sides to exception handling:

• Supplier side: a method can:

• throw (also “raise”) an exception to signal

exceptional behavior to its caller
(throw statement)

• optionally, declare in its signature that it may

throw exceptions of certain types
(throws clause)

• Client side: any piece of code can:

• react to (also “catch”) an exception thrown by

some called methods
(try, catch and finally clause)

Exception handling in Java

• A class Account models a bank account. A method

withdraw decrements the balance balance by

amount. If we try to withdraw more money than

there is in the account, we throw an exception.

Throwing exceptions

public class Account {

private int balance;

// ...

public void withdraw(int amount) {

if (amount < balance) {

balance = balance - amount;

} else {

throw new IllegalArgumentException(“Not enough money!");

}

}

}

Object of class
IllegalArgumentException

which includes a message

• Method withdraw can (but doesn’t have to)

declare in its signature that it may throw an

exception of illegal argument. This way, callers

know that they may have to handle that exception.

Declaring exceptions

public class Account {

private int balance;

// ...

public void withdraw(int amount) throws IllegalArgumentException {

if (amount < balance) {

balance = balance - amount;

} else {

throw new IllegalArgumentException(“Not enough money!");

}

}

}

• The try-catch-finally statement supports exception handling:

Handling exceptions

try {

// Code that may throw exceptions

} catch (ExceptionType e) {

// Code executed when an exception of class ExceptionType is thrown in try

} finally {

// Code executed after the try-catch block,

// regardless of whether an exception was thrown

}

1. The code in the try block executes

2. If an exception is thrown in 1., the code in the catch block executes

• There may be multiple catch blocks for different exception

classes
• Only the catch block of the exception class that was thrown is

executed
• If no suitable catch block exists, the exception is propagated,

as if it was not caught

3. Regardless of whether a catch block was executed, the finally block

executes before continuing

Handling exceptions: example

import javax.swing.*;

public class FaultTolerantSquare {

public static void main(String[] args) {

boolean done = false;

while (!done) {

String indata = JOptionPane.showInputDialog(“Input an integer:");

try {

int tal = Integer.parseInt(indata);

int res = tal * tal;

JOptionPane.showMessageDialog(null, “The square is " + res);

done = true;

} catch (NumberFormatException e) {

JOptionPane.showMessageDialog(null, “Invalid integer. Try again!");

}

}

}

}

• Java offers several exception classes for common errors

- ArrayIndexOutOfBoundsException

- NullPointerException

- NumberFormatException

- IllegalArgumentExecption

- …

• When constructing an object of an exception class, we can pass a

string to the constructor to serve as error message

• method getMessage() returns the message string

• method printStackTrace() prints the sequence of calls that

lead to an exception

• it is printed when you run a program that terminates with an
uncaught exception that propagates to the main method

Exception classes

• Java exception classes are partitioned in two

categories:

- unchecked exceptions, such as
ArithmeticException, NullPointerException,
and IllegalArgumentException, do not have to be
declared or handled

- checked exceptions, such as
FileNotFoundException, have to be declared and
handled (the compiler checks this)

- Even with unchecked exceptions, it’s good practice to
declare them at least in the documentation (e.g. comments)

- We will see a few more details about exceptions in the
second part of the course

Checked vs. unchecked exceptions

Checked exceptions: example

import java.util.Scanner;

import java.io.File;

import java.io.FileNotFoundException;

public class ReadFromTextFile {

public static void main(String[] args) throws FileNotFoundException {

System.out.println("The sum is: " + sumInFile("indata.txt"));

}

private static int sumInFile(String fileName) throws FileNotFoundException {

File in = new File(fileName);

Scanner sc = new Scanner(in);

int sum = 0;

while (sc.hasNext()) {

sum = sum + sc.nextInt();

}

return sum;

}

}

Have to declare

checked exception

May throw checked
FileNotFoundException

May throw unchecked
InputMismatchException

Checked exceptions: example

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class ReadFromTextFile2 {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

boolean done = false;

while (!done) {

System.out.print("Give filename: ");

String fileName = sc.next();

try {

System.out.println("The sum is: " + sumInFile(fileName));

done = true;

} catch (FileNotFoundException e) {

System.out.println("File doesn't exist!");

}

}

}

private static int sumInFile(String fileName) throws FileNotFoundException {

// as before

}

}

Have to handle

checked exception

May throw checked
FileNotFoundException

Example problem

• Write a method

public static int[] reverse(int[] arr)

that inputs an integer array arr and returns a copy of the input

where the elements appear in reverse order; if arr is null, the

method throws an IllegalArgumentException.

• Example: given inputs:
int[] f1 = {1, 6, 3, 9};

int[] f2 = null;

• reverse(f1) returns [9, 3, 6, 1]

• reverse(f2) throws an IllegalArgumentException

Problem statement

• Analysis: we create a new array rev of the same

size as the input array arr; we fill in rev oin

reverse order (from the right-hand side) with the
same elements as arr

• Algorithm:

1. if arr is null, throw exception

2. initialize rev with the same size as arr

3. for each index value k from 0 to arr’s length:

1. set rev[arr.length - k - 1] to arr[k]

2. switch to the next value of k

Analysis and design

Implementation

import java.util.Arrays;

public class Reversal {

public static void main(String[] args) {

int[] f1 = {1, 2, 3, 4};

int[] f2 = null;

System.out.println(Arrays.toString(reverse(f1)));

System.out.println(Arrays.toString(reverse(f2)));

}

public static int[] reverse(int[] arr) {

if (arr == null)

throw new IllegalArgumentException();

int[] rev = new int[arr.length];

for (int k = 0; k < arr.length; k += 1) {

rev[arr.length - k - 1] = arr[k];

}

return rev;

}

}

