
Enums, recursion, software design

Lecture 14 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology – Gothenburg University
Fall 2016



Pop quiz!
1. Go to kahoot.it

2. Enter PIN shown on projector screen

3. Pick a nickname and go!

kahoot.it


Enumerated types (enums)

Enumerated types are a convenient solution to create type with a only
finite number of values.

• yes, no, I don’t know

• Swedish counties: Stockholm, Uppsala, Kalmar, Västra
Götaland, Dalarna, . . .

• age ranges: infant, adolescent, adult, senior

enum Answer { YES, NO, DONT_KNOW };

Type Answer is a reference type that implicitly inherits from class Enum

and includes 3 distinct constant values Answer.YES, Answer.NO, and
Answer.DONT_KNOW.

Even if they are reference types, using == compares instances of enum
types by value.

2 / 26



Enumerated types (enums)

Enumerated types are just a special syntax for classes with some
restrictions. In particular, you can redefine how values are displayed
and compared.

enum Answer {

YES("Y"),

NO("N"),

DONT_KNOW("?");

Answer(String repr)

{ this.repr = repr; }

private String repr;

@Override

public String toString()

{ return this.repr; }

}

Answer a = Answer.YES;

System.out.println(a); // print "Y"

3 / 26



Software design

Understanding the behavior of the various programming language
constructs is only the first step towards writing good programs.

• good ' correct, readable, modifiable, efficient, . . .

We give an overview of some design principles and techniques that
can help write better programs.

• Design techniques:
• top-down design
• bottom-up design
• refactoring
• test-driven development

• Design principles:
• do not repeat yourself
• keep it small
• information hiding
• design for change

4 / 26



Top-down design

1. start designing the high-level (abstract) components (abstract
classes and method signatures)

2. refine (reduce abstraction) the components by adding details

3. until everything is concrete and executable

Step 1:
interface AccountI {

void deposit(int amount);

}

Step 2:

abstract class Account

implements AccountI

{ int balance;

// set balance to 0

Account() { }

// add ‘amount’ to ‘balance’

abstract

void deposit(int amount);

}

Step 3:

class Account

implements AccountI

{ int balance;

// set balance to 0

Account() { balance = 0; }

// add ‘amount’ to ‘balance’

void deposit(int amount)

{ balance += amount; }

}

5 / 26



Top-down design

Top-down design is also applicable at the level of individual method
implementations as stepwise refinement.

Step 1:

// input: non-null array a

// output: sum of values in a

int sum(int[] a)

{ }

Step 2:

// input: non-null array a

// output: sum of values in a

int sum(int[] a)

{ int sum = 0;

// for each position k in a:

// add a[k] to sum

return sum; }

Step 3:

// input: non-null array a

// output: sum of values in a

int sum(int[] a)

{ int sum = 0;

// for each position k in a:

// add a[k] to sum:

sum += a[k];

return sum; }

Step 4:

// input: non-null array a

// output: sum of values in a

int sum(int[] a) {

{ int sum = 0;

// for each position k in a:

for (int k=0; k < a.length; k++)

{ // add a[k] to sum:

sum += a[k]; }

return sum; } 6 / 26



Bottom-up design

1. start designing individual components independently, or reuse
those provided by libraries

2. combine the components to build more complex components
3. until the overall functionality is implemented

Step 1:
class Account

{ /* ... */ }

class Person

{ /* ... */ }

// Collections Framework

interface List<E>

{ /* ... */ }

class ArrayList<E>

{ /* ... */ }

Step 2:

class PersonalAccount

extends Account

{

Person owner;

// ...

}

Step 3:

class Bank

{

final float interest = 0.02;

ArrayList<PersonalAccount> accounts;

void depositInterest()

{

for (a : accounts)

a.deposit(a.balance * interest);

}

// ...

}

7 / 26



Top-down and bottom-up

Object-oriented programming languages support both top-down and
bottom-up development:

• top-down: inheritance, abstract classes, interfaces

• bottom-up: encapsulation, polymorphism, assertions &
exceptions

In practice programs are often developed with a combination of
top-down and bottom-up, with a mixture that depends on the specific
problem being targeted.

8 / 26



Refactoring

Any realistic software development process goes through trials and
errors: you hardly ever get the program right at the first attempt!

Refactoring is the activity of changing parts of the design or
implementation of a program under development to improve and
adapt it.

Examples of refactoring:

• introduce constants

• extract common implementations in two or more methods

• change the public interface of a class

• change the inheritance hiearchy

• . . .

9 / 26



Refactoring: method extraction example

Before refactoring:

void deposit(int amount)

{ if (amount > 0)

balance += amount; }

void withdraw(int amount)

{ if (amount > 0)

balance -= amount; }

After refactoring:

void deposit(int amount)

{ if (isPositive(amount))

addAmount(amount); }

void withdraw(int amount)

{ if (isPositive(amount))

addAmount(-amount); }

private boolean isPositive(int amount)

{ return amount > 0; }

private void addAmount(int amount)

{ balance += amount; }

10 / 26



Test-driven development

In a previous class, we already emphasized the importance of writing
tests. Test-driven development revolves around this principle:

• test extensively

• test early

• test often

• refactor implementation and tests accordingly

Test-drive development is often advocated with aggressive
refactoring.

11 / 26



Design principles

Do not repeat yourself.

• use constants

• refactor methods

• use libraries

Keep it small.

• refactor methods and classes

• use inheritance to gradually
extend public interfaces

• use expressive constructs
(e.g. exceptions) when
appropriate

Information hiding.

• use visibility modifiers
appropriately

• public interfaces vs. private
implementation details

• use abstract classes and
interfaces

Design for change.

• use genericity

• generalize (abstract) beyond
the specific example

• but do not overdo it!

12 / 26



Recursion in programming

Recursion is a style of programming where methods are defined in
terms of themselves.

The definition of a method m is recursive if
the implementation of m includes a call to m (directly or indirectly).

// compute xy, for y ≥ 0
int pow(int x, int y) {

if (y == 0)

return 1;

else

return x * pow(x, y - 1);

}

recursive call

13 / 26



Recursion in mathematics

Recursion is a style of definition where concepts are defined in terms
of themselves.

The definition of a concept is recursive if
it defines the concept in terms of an instance of the concept itself.

Definition of natural numbers:

• 0 is a natural number

• if n is a natural number then n + 1 is a natural number.

recursive/inductive definition

14 / 26



Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! , n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

15 / 26



Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! , n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

= n · (n − 1) · · · · · 1︸ ︷︷ ︸
n−1 terms

15 / 26



Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! , n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

= n · (n − 1) · · · · · 1︸ ︷︷ ︸
n−1 terms

n! ,

{
1 if 0 ≤ n ≤ 1

n · (n − 1)! if n > 1
base case

recursive/inductive case

15 / 26



Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! ,

{
1 if 0 ≤ n ≤ 1

n · (n − 1)! if n > 1
base case

recursive/inductive case

int factorial(int n) {

if (n <= 1)

return 1; // base case

else

return n * factorial(n - 1); // recursive case

}

recursive call

16 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)
call

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2)

call

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

call

call
exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1)

call

call
exec

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

call

call

call

exec

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1

call

call

call

exec

exec

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1

call

call

call

return

exec

exec

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1return 3 * 2

call

call

call

returnreturn

exec

exec

exec

17 / 26



How does recursion work?

• Each recursive call runs an independent instance of the
recursive method. (Independent means that it has its own private
copy of actual arguments and local variables.)

• When a recursive instance terminates, execution resumes in the
calling instance after the recursive call.

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1return 3 * 26

call

call

call

returnreturnreturn

exec

exec

exec

17 / 26



Recursion as a design technique

Recursion as a programming technique is useful to design programs
using the divide and conquer approach:

To solve a problem instance P, split P into problem instances
P1, . . . ,Pn chosen such that:

1. Solving P1, . . . ,Pn is simpler than solving P directly

2. The solution to P is a simple combination of the solutions to
P1, . . . ,Pn

18 / 26



The Tower of Hanoi

Goal: move sorted stack of disks to from the left to the middle peg

Rules:

1. Move one disk at a time

2. A move consists of taking the disk on top of one peg and placing
it on top of another peg

3. Throughout the game, a larger disk can never be placed on top
of a smaller disk

19 / 26



The Tower of Hanoi: one disk

20 / 26



The Tower of Hanoi: two disks

21 / 26



The Tower of Hanoi: n disks

1. Recursively move n − 1 disks on a spare peg

2. Move remaining largest disk to destination peg

3. Recursively move n − 1 disks from spare peg to destination peg

22 / 26



The Tower of Hanoi: n disks

// move ‘n’ top disks

// from ‘source’ peg to ‘destination’ peg via ‘spare’ peg

public void move(int n,

PegPosition source, PegPosition destination, PegPosition spare) {

if (n == 1)

// base case

move(source, destination);

else {

// recursively move n - 1 to spare

move(n - 1, source, spare, destination);

// move largest disk to destination

move(1, source, destination, spare);

// recursively move n - 1 to destination

move(n - 1, spare, destination, source);

}

}

23 / 26



The original Tower of Hanoi

In the great temple of Benares, under the dome that
marks the center of the world, three diamond needles, a foot
and a half high, stand on a copper base. God on creation
strung 64 plates of pure gold on one of the needles, the
largest plate at the bottom and the others ever smaller on
top of each other. That is the tower of Brahma. The monks
must continuously move the plates until they will be set in
the same configuration on another needle. The rule of
Brahma is simple: only one plate at a time, and never a
larger plate on a smaller one. When they reach that goal,
the world will crumble into dust and disappear.

Édouard Lucas, Récréations mathématiques, 1883.

24 / 26



Got time for 64 disks?

• For n disks, the recursive solution generated by our program
enumerates 2n − 1 moves

• We could show that this is the minimum number of moves to
solve the problem following the rules

• If one move takes 1 millisecond, 264 − 1 milliseconds is about
580 million years

• For comparison: dinosaurs got extinct about 65 million years
ago, humans are about 2.5 million years old

Bottom line: recursion is a powerful abstraction tool, which can be
very effective at expressing the solutions to complex problems in a
simple way.

25 / 26



Recursion vs. Iteration

In principle, anything that can be done using recursion can be done
using iteration (loops) as well, and vice versa.

Recursive factorial:
int factorial(int n) {

if (n <= 1)

return 1;

else

return n * factorial(n - 1);

}

Iterative factorial:

int factorial(int n) {

int factorial = 1;

for (int k = n; k > 1; k--)

factorial *= k;

return factorial;

}

However, when the divide and conquer approach is naturally
applicable, recursion often leads to more readable and clearer
programs.

26 / 26


