
Packages, exceptions, assertions & testing

Lecture 13 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology – Gothenburg University
Fall 2016

Pop quiz!
1. Go to kahoot.it

2. Enter PIN shown on projector screen

3. Pick a nickname and go!

kahoot.it

Static members

Attributes and methods declared using the keyword static relate to
the whole class where they are declared, as opposed to each
instance (object) independently from the others. Thus, static
members behave very differently from the instance (non-static)
members we have seen in this class so far.

• a static attribute is a state component shared by every object of
the class where it is declared

• a static method can only reference static members, as well as
its local variables and arguments

• static members are accessed using their class name instead of
an object reference; thus, they are accessed without creating
objects of their enclosing class

2 / 44

When to use static members?

In object-oriented programming:

• instance members are the norm
• static members are used only for special cases

Instance members capture the state of and operations on objects:

OPERATION INSTANCE

create object: Account a = new Account();

modify object state: a.deposit(100);

read current object state: if (a.balance() > 100) ...

Static members capture global operations and state that are available
independent of the created objects:

ITEM STATIC

constant: double angle = Math.PI/4.0;

math operation: double cathetus = hypothenuse * Math.cos(angle);

global state: double interest = BankAccount.interest;
3 / 44

Static or instance?

Rule of thumb to choose whether member m should be static:

Does it make sense to call (method) or access (attribute)
m independent of specific objects of its class?

1. If the answer is yes, then you probably need a static member;

2. If the answer is no, then you should go with an instance member.

In most cases, the answer should be no!

4 / 44

Static or instance: examples

class BankAccount {

private int balance;

public

void withdraw(int amount) {

balance = balance - amount;

}

public

void deposit(int amount) {

balance = balance + amount;

}

}

Both withdraw and deposit modify the state (attribute balance) of the
current object: they must be instance methods.

5 / 44

Static or instance: examples

class BankAccount {

private static final double interest = 0.02;

public static double interest() {

return interest;

}

public static int percentInterest() {

return (int) (interest() * 100);

}

}

Both interest and percentInterest are independent of specific
instances of class BankAccount, as they both depend on constant
interest, which is shared by all instances of BankAccount: they must
be static methods.

6 / 44

Static or instance: examples

public class Car extends Vehicle {

String factoryId() {

return "Car-" + super.id();

}

}

Method factoryId depends on super, which is a reference to an
object of the superclass Vehicle: it must be an instance member,
otherwise super may not be defined.

7 / 44

Static or instance: examples

public class X extends Y {

@Override

public int z() {

return 42;

}

}

Method z overrides a method with the same signature in the
superclass Y of X. Overriding only applies to instance methods, and
hence z cannot be static.

8 / 44

Static or instance: examples

public class Car {

public static int addInterest(BankAccount account,

double interest) {

double withInterest = account.balance() * interest;

account.deposit((int) withInterest);

}

}

The operation addInterest is independent of objects of class Car, as
it only operates on objects of class account. Therefore, it is
technically OK that it is a static method; however, it probably indicates
questionable design: addInterest should probably be an instance
method of class BankAccount.

9 / 44

Packages

Packages provide a hierarchical naming mechanism for classes

• A package is a group of classes (and other packages)
• Packages can be nested inside other packages
• The package structure maps to the directory structure

• one package per directory
• one top-level public class (or interface) per file

• Unlike classes, packages are just a naming mechanism: you do
not instantiate a package

// file Car.java

package vehicles.cars;

public class Car

{ /* ... */ }

// file Convertible.java

package vehicles.cars;

public class Convertible

extends Car

{ /* ... */ }

class Sedan extends Car

{ /* ... */ }
10 / 44

Declaring packages

Writing package P at the beginning of a file F.java declares that the
entities (classes, interfaces, etc.) in file F.java belong to package P.

• The fully qualified name of any entity C declared in file F.java is
P.C

• The fully qualified name unambiguously identifies any top-level
entity in a Java program

• A package N nested inside another package P is declared as
package P.N

• If file F.java declares no package, its entities are part of an
implicit anonymous package shared by all files in the same
directory

• It is good practice to declare a package explicitly for all programs
but the simplest ones

11 / 44

Using packages

// file Vehicle.java

package vehicles;

public interface Vehicle

{ /* ... */ }

// file Car.java

package vehicles.cars;

import vehicles.*;

public class Car implements Vehicle

{ /* ... */ }

class Convertible extends Car

{ /* ... */ }

// file Main.java

package retailer;

import vehicles.*;

// Vehicle imported by vehicles.*

Vehicle car, conv;

car = new vehicles.cars.Car(); // OK: fully-qualified name

// error: Convertible not visible here

conv = new Convertible();
12 / 44

Using packages

Writing import P.C makes entity C in package P available in the
current file (as if it were declared here)

• If another entity also named C already exists in the importer’s
package, it shadows P.C

• use the fully-qualified name to access P.C

• import P.* makes all entities in package P available, but not
those in P’s subpackages.

• entities in system package java.lang are implicitly imported
anywhere

package foo.bar.baz;

import java.util.Set; // import interface Set from java.util

import java.awt.*; // import all entities in java.awt

import java.awt.event.*; // import all entities in java.awt.event

13 / 44

Static imports

Writing import static P.C.S makes static entity S in class P.C

available in the current file (as if it were declared here)

import static java.lang.Math.PI; // π = 3.1415...
import static java.lang.Math.cos; // cos function

// ...

double len = cos(PI/2.0);

14 / 44

Guidelines for using packages

When importing from existing packages:

• use fully-qualified names if you only refer to an entity once or
twice

• prefer fully-qualified names if traceability (where was this
declared?) is important

• consider fully-qualified names to distinguish between entities
with similar names in different packages

• use import P.* if you use several entities from the same package

• trade-off between clarity and readability

When declaring new packages:

• group coupled classes in the same package

• use packages in combination with default package visibility

• do not overuse hierarchical packages: packages should roughly
be one order of magnitude fewer than classes

15 / 44

Core packages in Java

• java.lang: basic language functionality, fundamental types

• java.util: collection framework

• java.io and java.nio: old and new file input/output

• java.math: multi-precision arithmetic

• java.net: networking

• java.security: cryptography

• java.sql: database access

• java.awt: native GUI components

• javax.swing: platform-independent GUI components

16 / 44

Exceptional behavior

Sometimes things do not go as planned during the execution of a
program:

• the user provides invalid input

• the program runs out of memory

• a network connection cannot be established because a website
is down

• . . .

To make the program more robust about such exceptional events, we
would like to define two separate behaviors:

1. normal behavior: what we have seen so far

2. exceptional behavior: using exceptions and exception handling

17 / 44

Exception objects

Exception handling in Java uses exception objects, which are
instances of exception classes

Throwable

Error

...

Exception

RuntimeException ...

18 / 44

Programming with exceptions

There are two sides to programming with exceptions:

suppliers throw (raise) exception objects to signal to clients that
an exceptional event has occurred

clients catch (handle) exception objects and take
counter-measures to work around the exceptional event

Programs with exception-handling have two control flows:

1. normal control flow: no exception occurs, exception-handling
code is not executed

2. exceptional control flow: exceptions occur, exception-handling
code is executed

19 / 44

Throwing exceptions

How to signal exceptional behavior:

• create an object ex of type that inherits from Throwable

• one of the standard exception types in java.lang

• or one new exception class (must be a heir of Throwable)

• raise the exception and pass control to the caller with throw ex

// parse nonnegative integer string

int stringToInt(String str) {

int result;

if (str == null) throw new NullPointerException();

for (int i = 0; i < str.length; i++) {

if (!Character.isDigit(str.charAt(i)))

throw new NumberFormatException(str + " is not an integer!");

// ... normal behavior ...

return result;

}

20 / 44

Catching exceptions

Exception-handling code uses the try/catch/finally statements.

BLOCK BEHAVIOR

try { ... } execute the code in the block monitoring for
raised exceptions

catch(ET e) { ... } if an exception of type ET is raised while executing
the corresponding try block, execute the code in
the catch block, where e points to the raised ex-
ception object

finally { ... } after executing the corresponding try block, and
possibly after executing any catch block, execute
the code in the finally block

A try block determines a “client” that may receive exception objects,
and the two corresponding control flows (normal and exceptional).

A finally block is normally used to close/deallocate resources (such
as files) regardless of whether an exception is thrown or not.

21 / 44

Exception handlers

Every try block is followed by zero or more catch blocks, zero or one
finally block, or both. At least one catch block or one finally block
is required (otherwise the try would be useless).

// parse nonnegative integer string

Integer stringToInteger(String str) {

Integer result = null;

try {

result = Integer.parseInt(str);

} catch (NumberFormatException e) {

// if parseInt throws a NumberFormatException

// print this error message:

System.out.println(str + " is not a valid nonnegative int");

}

// returning -1 means that parsing a nonnegative integer failed

if (result != null && result >= 0) return result else return -1;

}

22 / 44

Exception handlers: catch blocks

Catch blocks use types to handle specific kinds of exceptions:

catch (ET e) { /* handler code */ }

• handle exceptions whose type is a subtype of ET
• ET must be a subtype of Throwable
• e behaves like a local variable inside the handler block
• if multiple catch blocks are defined, execute the first block whose

type matches the raised exception’s type

Multi-catch blocks:

catch (ET1 | ET2 | ET3 e) { /* handler code */ }

• handle exceptions whose type is a subtype of ET1, of ET2, or of
ET3

• ET1, ET2, and ET3 must not be related by inheritance
• e behaves like a constant inside the handler block

23 / 44

Nested exception handling blocks

When an exception of type E is thrown while executing the code
inside a try block:

1. the first (in textual order) catch block whose type is a supertype
of E executes

2. then, the finally block executes (if it exists)

3. then, execution continues after the try block

If no suitable catch block exists, or if a catch block raises an
exception:

1. the finally block executes (if it exists)

2. then, the exception propagates to the next enclosing handler

If no enclosing handler exists:

1. the exception propagates to the main method

2. the program forcefully terminates
24 / 44

Catch, handle, and rethrow: example

Read an n-digit integer from a file with name fn:

int readNum(String fn, int n)

Exceptions to handle many things that can go wrong:

• a file with name fn doesn’t exist

• the file exists but it cannot be opened

• the file’s content is not a valid integer

• the file’s content is an integer with fewer than n digits

25 / 44

Read n-digit integer from file

int readNum(String fn, int n) {

int result;

BufferedReader br = null;

try {

br = new BufferedReader(new FileReader(fn));

String str = br.readLine();

if (str.length < n)

// throw too few digits exception

throw new TooFewDigitsException(str.length);

result = Integer.parseInt(str);

} catch (FileNotFoundException e) { throw e; } // propagate except.

catch (IOException e) { throw e; } // propagate exception

catch (NumberFormatException e) { result = 0; } // handle exception

finally { if (br != null) br.close(); } // close file

// even if an exception is propagated!

return result;

}
26 / 44

Client code of readNum

int x;

final String filename = "iamalldigits.txt";

try {

// try to read 7-digit number

x = readNum(filename, 7);

} catch (TooFewDigitsException e) {

// try again, with number of characters read

try { x = readNum(filename, e.numRead); }

catch (Exception e)

{ System.out.println("No valid integer could be read"); }

} catch (Exception e) {

System.out.println("Some IO error occurred"); }

}

27 / 44

Checked vs. unchecked exceptions

Java exception classes are partitioned in checked and unchecked

Throwable

Error

...

Exception

RuntimeException ...

28 / 44

Checked vs. unchecked exceptions

Java exception classes are partitioned in checked and unchecked

CHECKED UNCHECKED

declared in method signatures with
throws

not declared explicitly (but normally
still in documentation)

clients of methods using checked
exceptions have to handle the ex-
ceptions, or declare that they may
propagate them

clients may or may not handle the
exceptions

the compiler checks that excep-
tions are handled

if unhandled exceptions occurs,
the program terminates

29 / 44

Checked exceptions

Checked exceptions must be handled or declared with throws. For
example, constructor of class java.io.FileReader declares checked
exception FileNotFoundException.

Declare checked exception:
void printFile(String filename)

throws FileNotFoundException

{

FileReader fr;

// may throw exception,

// which is propagated

fr = new FileReader(filename);

// ...

}

Handle checked exception:

void printFile(String filename)

{

FileReader fr;

try {

fr = new FileReader(filename);

} // handle exception if thrown

catch (FileNotFoundException e) {

System.out.println("Fail!");

}

}

30 / 44

Exceptions: checked or unchecked?

Java tends to prefer checked exceptions:

• unchecked exceptions are behavior that is not explicit (in the
method signature)

• clients can be prepared to deal with checked exceptions

However, checked exceptions have their own disadvantages:

• proliferation of exception-handling code
• complex logic to decide which exceptions to propagate and

which to handle
• changing exceptions may change the public interface of methods

How to choose in practice between checked and unchecked
exceptions?

• use a checked exception if the client can do something to recover
from the exception

• document the usage of unchecked exceptions too
• usually prefer checked exceptions to error codes

31 / 44

Writing correct programs

Programming means writing instructions that achieve a certain
functionality. How do we know if a program is correct? And what
does it even mean that a program is correct?

To this end, we distinguish between implementation and specification:

• The implementation consists of the actual code that is written,
compiled, and executed

• The specification is a description of what the program should do,
usually more abstract than the implementation

Implementation:
int sum(int[] a)

{ int sum = 0;

for (v : a)

sum += v;

return sum; }

Specification:
method sum takes a non-null reference
a to an array of integers, and returns
the sum of all values in a

32 / 44

Method specifications

Let us focus on input/output specifications of individual methods.
Such specifications consist of two parts:

1. precondition: a constraint that defines the method’s valid inputs

2. postcondition: a functional description of the output after
executing the method

Implementation:
int sum(int[] a)

{ int sum = 0;

for (v : a)

sum += v;

return sum; }

Specification:

1. precondition: a != null

2. postcondition:
sum ==

∑
0≤k<a.lengtha[k]

33 / 44

Method specifications in object-oriented programs

In object-oriented programs, the input and output of a method also
include the object state before and after executing the method.

Implementation:
class BankAccount {

int balance;

void deposit(int amount)

{ balance += amount; }

}

Specification:

1. precondition: amount >= 0, no constraint
on balance

2. postcondition:
“after” balance == “before” balance + amount

34 / 44

Pre/postconditions in Java

Java does not have support for writing pre/postcondition
specifications in the source file.

JML is a system for annotating Java programs in special comments.

class BankAccount {

int balance;

//@ requires amount >= 0;

//@ ensures balance == \old(balance) + amount;

void deposit(int amount)

{ balance += amount; }

}

35 / 44

Assertions

Even if Java does not have support for writing pre/postcondition
specifications in the source file, it supports assertions, which are a
more primitive way of expressing specifications in the source file of a
program.

When execution reaches the statement:

assert condition;

the Boolean condition is evaluated on the current program state:

1. if condition == true, execution continues
(the assertion passes: no effects)

2. if condition == false, an exception AssertionError is thrown
(the assertion fails)

Important: assertion checking is disabled by default (assert
statements are skipped during execution). To enable it run your
program with java -ea MyProgram.

36 / 44

Assertions and invariants

Assertions encode invariants: conditions on the program state that a
correct programs should satisfy whenever execution reaches the
location of the assertion.

• assertions encode the assumptions the program relies on
• in a correct program, assertions always evaluate to true (and

thus no effect)
• an assertion evaluating to false indicates that there is a mismatch

between assumptions and actual execution (probably an error)

void deposit(int amount) {

assert amount >= 0;

int old_balance = balance;

balance += amount;

assert balance >= old_balance;

}

account = new BankAccount();

assert account.balance == 0;

int square = x * x;

assert square >= 0;

account.deposit(square);

assert account.balance >= 0;

37 / 44

Assertions and exceptions

Both assertions and exceptions are means to deal with unwanted
behavior. In Java, failing assertions throw exceptions, so there is a
clear connection between the two.

• exceptions should signal exceptional but possible behavior
• the exceptional behavior requires a special handling
• but exceptions may occur even in a perfectly correct program: for

example, invalid user input, or I/O errors

• assertions should encode the specification of correct behavior
• when the specification is satisfied, nothing special happens
• assertions should never fail in a correct program

In practice, however, since Java does not check assertions by default
and uses exceptions extensively, exceptions are used also in cases
where an assertion would be more appropriate.

38 / 44

Verification

Verification is the process of checking that a program is correct. This
means that, in addition to the implementation, there is also some form
of specification (possibly only informal).

Two main techniques to do verification:

• testing: run the program using many different inputs, check that
every run satisfies the specification

• formal verification: mathematically prove that every possible
execution of the program satisfies the specification

39 / 44

Unit testing

Testing in a nutshell:

• run the program using many different inputs

• check that every run satisfies the specification

Unit testing: testing one method in isolation.

Method deposit under test:
class BankAccount {

int balance;

void deposit(int amount)

{ balance += amount; }

}

Testing code:

BankAccount ba = new BankAccount();

ba.deposit(0);

assert ba.balance == 0;

ba.deposit(121);

assert ba.balance == 121;

ba.deposit(3);

assert ba.balance == 121 + 3;

40 / 44

How many inputs can we test?

If we could check all valid inputs of a method, testing would be
equivalent to proving correctness. But is this feasible in practice?

• Test all possible input arguments to deposit: ' 231 ' 2.1 · 109

// runs in 0.05 seconds

for (int v = 0; v < Integer.MAX_VALUE; v++) {

BankAccount ba = new BankAccount();

ba.deposit(v);

assert ba.balance == v;

} // must test Integer.MAX_VALUE separately: why?

• Test all possible input states to deposit: ' 232 · 231 ' 9.2 · 1018

// runs in > 500 days

for (int u = Integer.MIN_VALUE; u < Integer.MAX_VALUE; u++)

for (int v = 0; v < Integer.MAX_VALUE - ((u > 0) ? u : 0); v++) {

{ BankAccount ba = new BankAccount();

ba.balance = u;

ba.deposit(v);

assert ba.balance == u + v; } 41 / 44

Testing in practice

Testing cannot realistically try out all possible inputs. Instead, its main
purpose is to try out a good number of varied inputs in a way that has
a good chance of exposing errors.

Testing heuristics for selecting inputs:

• boundary values

• for int: Integer.MAX_VALUE, Integer.MIN_VALUE
• for String: null, ""

• partition the input values, and pick one element per partition

• for int: n < 0, n == 0, n > 0

• for String: string of digits, string of alphabetic characters, string of
non-alphanumeric characters, . . .

• partition according to the conditions in the method under test

• pick some inputs at random

• regression testing: pick inputs that triggered errors previously
(and now should have been fixed)

42 / 44

Thou shall test your code!

Systematically testing your code is a good practice that every
programmer should follow.

• Test extensively: try to write unit tests for all public methods of
all your classes

• Test early: as soon as a class has a public interface, you can
write tests for it, which reflect the specification (the tests will fail
until you have implementations)

• Test often: as soon as you change anything in a class
implementation, rerun the tests for it to check that everything
works

• Test for regressions: for every error that you discover, add a test
that exposes the error to your collection of tests

43 / 44

Unit testing example

class Account {

int balance;

List<String> owners;

// add amount to balance

void deposit(int amount) {

balance += amount;

}

// add account owner if not null

void addOwner(String name) {

if (name != null)

owners.add(name);

}

}

class AccountTest {

static void testDeposit() {

Account ba = new Account();

ba.deposit(10);

assert ba.balance == 10;

ba.deposit(-10);

assert ba.balance == 0;

}

static void testAddOwner() {

Account ba = new Account();

ba.addOwner("Jane Doe");

assert ba.owners.size() == 1;

ba.addOwner(null);

assert ba.owners.size() == 1;

}

} 44 / 44

