CHALMERS

Interfaces & the Collections Framework
Lecture 11 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology — Gothenburg University
Fall 2016

Pop quiz!

1. Go to kahoot.it
2. Enter PIN shown on projector screen
3. Pick a nickname and go!

kahoot.it

Lists of anything

Very often, programs need to organize and access objects in some
kind of list data structure:

« lists can store objects of any type (type generic)

* but the elements in a given list instance all have the same type
(homogeneous)

« a list can store an arbitrary number of objects

 operations on a list:

» access objects in the list at any position
» add objects to the list at any position
» remove objects in the list at any position

Arrays as lists

We have used class Array as lists.

* an array can store elements of arbitrary type (including primitive
types)

* the size of an array is fixed and set upon creating it

+ a default value may denote absence of element at that position

OPERATION SYNTAX
declare list of type T T[] a = new T[10];
number of stored objects (fixed) a.length
object at position k alkl]
add object o at position k alk] = o;

remove object o at position k alk] = null;

A different kind of list

Let us use Array to implement a more flexible class for lists.

» The size of a list can change dynamically

« Alistis initially (when is created) empty

+ Adding elements to a list increases the size of the list

» Removing elements from a list decreases the size of the list

* When we add an element in the middle of the list, the other
elements shift position to make space for the new element

* When we remove an element in the middle of the list, the other
elements shift position to close the gap left by the removed
element

» We can still access an arbitrary element in the list by giving its
index

To keep things simple, let us write the list class for elements of
Character type only.

Live coding!
Let us design an array-based
implementation of flexible lists.

Custom class List: public interface

public class ListInterface

{
public ListInterface()

{ /* initialize an empty list x/ }

public int size()
{ /* number of elements in the list x/ }

public Character get(int index)
{ /* return element at position ‘index’ x/ }

public void add(int index, Character e)
{ /* add ‘e’ at position ‘index’ x/ }

public void remove(int index)

{ /* remove element at position ‘index’ */ }

6/32

Example client of List

// create empty list

List list = new List(); // list: []
// insert in invalid position
list.add(2, 'X"); // list: []

// insert in valid position
list.add(0, 'X"); // list: [X]
list.add(1, 'Y"); // list: [X, Y]
list.add(2, 'Z"); // list: [X, Y, Z]
// remove

list.remove(l); // list: [X, Z]

// insert back

list.add(1, 'A"); // list: [X, A, Z]

Custom class List: implementation

public class List extends ListInterface
{ // maximum number of elements
protected final int CAPACITY = 10_000;

// non-public array to store elements
protected Character[] elements;

// how many elements are currently stored
protected int size;

Custom class List: initialization

public class List extends ListInterface
{ // maximum number of elements
protected final int CAPACITY = 10_000;

// non-public array to store elements
protected Character[] elements;

// how many elements are currently stored
protected int size;

public List() {
// make room for at most ‘CAPACITY’ elements
elements = new Character[CAPACITY];
// initially, the list is empty
size = 0;

Custom class List: size

public class List extends ListInterface
{ // maximum number of elements
protected final int CAPACITY = 10_000;

// non-public array to store elements
protected Character[] elements;

// how many elements are currently stored

protected int size;

@Override
public int size() { return size; }

Custom class Li

public class List extends ListInterface
{ // maximum number of elements
protected final int CAPACITY = 10_000;

// non-public array to store elements
protected Character[] elements;

// how many elements are currently stored
protected int size;

@Override
public Character get(int index) {
if (0 <= index && index < size)
return elements[index]; // valid position: return element
else // invalid position: return null
return null;

Custom class List: add

public class List extends ListInterface
protected final int CAPACITY = 10_000;
protected Character[] elements;

{

protected int size;

@Over
publi

ride
c void add(int index, Character e) {

// if ‘index’ is a valid insertion position

if

ol

(0 <= index && index <= size) {
// make room at position ‘index’
// by shifting elements to the right
for (int k = size; index < k; k--)
elements[k] = elements[k - 1];
elements[index] = e; // add ‘e’ at (freed) position ‘index’

size = size + 1; // update size

Custom class List: remove

public class List extends ListInterface
{ protected final int CAPACITY = 10_000;
protected Character[] elements;

protected int size;

@Override
public void remove(int index) {
// 1f ‘index’ is a valid position inside the list
if (0 <= index && index < size) {
// overwrite at position ‘index’
// by shifting elements to the left
for (int k = index; k < size - 1; k++)
elements[k] = elements[k + 1];
// update size
size = size - 1;

ListInterface as

abstract public class ListInterface
{ // number of elements in the list
abstract public int size();

// return element at position ‘index’
abstract public Character get(int index);

// add ‘e’ at position ‘index’
abstract public void add(int index, Character e);

// remove element at position ‘index’

abstract public void remove(int index); }

public class List extends ListInterface
{ // no override: first implementation
public int size() { return size; } }

ListInterface as an

public interface ListInterface
{ // number of elements in the list
public int size();

// return element at position ‘index’
public Character get(int index);

// add ‘e’ at position ‘index’
public void add(int index, Character e);

// remove element at position ‘index’

public void remove(int index); }

public class List implements ListInterface
{ // no override: first implementation
public int size() { return size; } }

framework

Java’s Collections framework includes very carefully designed
implementations of lists, as well as other data structures of common
usage.

Even though they are more powerful and better optimized than our
List, they follow some of the same design principles:

* Public interfaces are separated from implementations
» There are different implementations of the same List interface

 Implementations of the same interface can be used uniformly by
clients without knowing implementation details

* Collections are generic: they can be used to store elements of
an arbitrary reference type

The interface

// generic interface of lists, for any reference type E
interface List<E> ({

void add(int index, E element); // add ‘element’ at ‘index’

E get(int index); // element at position ‘index’

E remove(int index); // remove element at position ‘index’

int size(); // number of elements in the list

// ... several more methods are available ...

Implementations of the interface

The Collections framework includes two main implementations of
List: ArrayList and LinkedList.

* ArraylList is similar to our example: it uses an array to store data
* get is very fast, add and remove are slower
* LinkedList stores data in a sequence of objects, each
referencing the next node
» add and remove are fast if we call them using iterators, get is slower

In practice the performance is very good for both unless you deal with
really huge lists. Use ArrayList as default choice.

Both perform automatic resizing: if the list is full, it transparently
allocates more memory (provided more memory is available). Thus,
we do not have to worry about the list being full.

How to use the Collections framework

There is plenty of official documentation about the Collections
framework online:

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/

1. Select the interface that provides the operations your application
needs

2. Select one implementation class of the interface that offers
efficient implementation of those operations

In most cases, you do not have to worry too much about the
implementation details.

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/

Partial overview of the Collections framework

Queue PriorityQueue

The Collections framework: some implementations

* ArrayList: indexed, dynamically growing

* LinkedList: ordered, efficient insertion and removal
* HashSet: unordered, rejects duplicates

* TreeSet: ordered, rejects duplicates

* HashMap: key/value associations (dictionary)

* TreeMap: key/value associations, sorted keys

Genericity in collections

Java offers a special syntax to define classes (and interfaces) that are
generic with respect to one (or more) types. The types determined by
generic classes are also called generic.

interface List<E>

* List is generic with respect to type parameter E

 For any concrete reference type C, List<C> is the interface that
operates on type C, and ArrayList<C> is the implementation that
operates on objects of type C

» Operations work for any choice of ¢; for example get returns
elements of the chosen concrete type ¢

» While ¢ can be anything, it is fixed once we declare an entity of a
generic class
ArraylList<Integer> intlist; // intList stores Integers
ArrayList<String> strlList; // strList stores Strings
// we cannot put strings in intlList, or integers in strList!

Just like we can declare custom classes, we can declare custom
interfaces:

public interface BankAccountInterface {
int balance();
void withdraw(int amount);
void deposit(int amount);

* interfaces can only contain method declarations and constants
(static final attributes)

* interface members are implicitly public (no need to use public)

* interface members cannot have implementations

« interfaces cannot be instantiated (they have no implementations)

An interface is like a list of operations that clients can use and that
classes can implement together. An interface is Java’s means to
declare public interfaces of classes.

Interfaces and classes

Just like a class can inherit from another class, a class can implement
an interface

class BankAccount implements BankAccountInterface {
private int balance;

int balance() { return balance; }

// ... other implementations ...

* aclass can implement one or more interfaces

+ a class should provide implementations for all methods of the
interfaces it implements; we do not use @override because the
class’s is the first implementation (an interface has no
implementations)

« aclass can also introduce other members (private or public)
without restrictions

Interfaces, inheritance, and types

Every interface 1 also corresponds to a type (operations on sets of
values).

An interface also can inherit from one or more interfaces, by providing
additional public methods (or constants).

interface BankAccountWithInterest extends BankAccount {
// add percent% interest to balance
void payInterest(int percent);

}
Interface types and class types are related by inheritance:

« If Cis a class that implements an interface I, we call the type of C
a subtype of the type of I.

« if Jis an interface that extends another interface 1, we call the
type of J a subtype of the type of I.

Abstract classes

Classes and interfaces are two opposite endpoints on a spectrum of
abstraction:

(CONCRETE) CLASS INTERFACE
complete implementation no implementation
must have constructor cannot have constructors
can be instantiated cannot be instantiated
all visibilities only public visibility

completely concrete completely abstract

Abstract classes

Classes and interfaces are two opposite endpoints on a spectrum of
abstraction:

(CONCRETE) CLASS ABSTRACT CLASS INTERFACE
complete implementation partial implementation no implementation
must have constructor may have constructor cannot have constructors
can be instantiated cannot be instantiated cannot be instantiated
all visibilities all visibilities only public visibility

completely concrete partially abstract completely abstract

Abstract classes

Methods and classes can be declared abstract:

* an abstract method lacks an implementation

+ a class with at least one abstract method is an abstract class

+ aclass can be declared abstract even if it is full implemented

* an interface is like a completely abstract class (no
implementations)

* an abstract class cannot be instantiated (and hence
constructors cannot be abstract)

abstract class PartialBankAccount { // partial implementation
abstract int balance();
abstract void withdraw(int amount);

void deposit(int amount) { withdraw(-amount); }

Polymorphism: subtypes and type compatibility

The subtype relation introduced by inheritance supports a powerful
coding style using polymorphism:

+ declare variables using the most general type 6

* use the variables according to G’s interface

« flexibly switch between different concrete implementations of 6
(subtypes of G) without changing anything else in the program!

interface List<E> {
E get(int index);
void add(int index, E e);
int size();

List<String> 1;

1 = // assign any List implementation

1.add(0, "hej");

l.add(1, " da");

if (l.size() > 0)
System.out.println(l.get(0) + l.get(1));

Polymorphism

Polymorphism provides a powerful abstraction mechanism for design:

* inheritance captures the relations between abstract models and
implementations (e.g. interface List and class ArraylList), and
among different variant implementations (e.g. class ArrayList
and class LinkedList)

+ code handles object uniformly at the appropriate level of
abstraction, without depending on implementation choices

 decoupling between interfaces and implementations
+ cohesion (consistency) on the shared types and operations
« component-based (bottom-up) construction of software

Polymorphism: example

Polymorphism provides a powerful abstraction mechanism for design

class CreditCard {
BankAccountI account;

void setPayments(BankAccountI ba)
{ account = ba; }

List<Transaction> transactions;

void pay(int nt) {
Transaction tr = transactions.get(nt);
if (tr '= null) {
account.withdraw(tr.amount());
transactions.remove(nt);

}}

Inheritance and collections

The subtyping relation introduced by inheritance applies to classes,
to collections of classes related by subtyping.

* class Convertible extends Car, thus Convertible is a subtype
of car
* class Sedan extends Car, thus Sedan is a subtype of Car
* the list type List<Convertible> (list of Convertible) is
of the list type List<Car> (list of Car)
« the list type List<Sedan> is of List<Car>

Inheritance and collections

The subtyping relation introduced by inheritance applies to classes,
not to collections of classes related by subtyping.

* class Convertible extends Car

* class Sedan extends Car

* the list type List<Convertible> (list of Convertible) is not a
subtype of the list type List<Car> (list of car)

// add a Sedan object to the end of List ‘cars’
public static void addSedan(List<Car> cars)
{ cars.add(new Sedan()); } // OK: a sedan is a car

If Convertible[] were a subtype of Car[], we could write:

List<Car> convs = new List<Convertible>();
convs.add(new Convertible()); // add a convertible to list
addSedan(convs); // add a sedan to list

A list of Convertible includes a Sedan, which is not a Convertible!

