Chalmers | GOTEBORGS UNIVERSITET 2017-01-12

Examiner: Thomas Hallgren, D&IT,
Answering questions at approx 15.00 (or by phone)

Functional Programming TDA 452, DIT 142

2017-01-12 14.00 - 18.00 “Maskin”-salar (M)

There are 6 questions with maximum 6 + 9+ 7 + 6 + 6 + 6 = 40 points; a total of 20
points definitely guarantees a pass.

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (6 points)
(a) (3 points) Give a define of the function
findIndices :: (a->Bool) -> [a] -> [Int]

that given a test and a list returns the indezes of the elements in the list that pass
the test. Examples:

findIndices isUpper "Hello World" == [0,6]
findIndices isDigit "Hello World" == []
filter isUpper "Hello World" == "HW"
Solution:

findIndices p xs = [il(i,x)<-zip [0..] xs,p x]

findIndices_v2 p = map fst . filter (p.snd) . zip [0..]

(b) (3 points) Write a property to verify that the elements at the indexes returned by
findIndices pass the test.

prop_findIndices :: (a->Bool) -> [a] -> Bool

Solution:

prop_findIndices p xs = and [p (xs!!i) | i<-is]
where is = findIndices p xs

-- Also accepted, although it doesn’t test exactly what was asked for...
prop_findIndices_v2 p xs = [xs!!'i | i<-findIndices p xs] == filter p xs

2. (9 points)

(a) (3 points) The following function works as intended, but the code is not as simple
and efficient as it could be:

split :: [a] —> ([a],[al)
split xs | length xs == 0
| length xs == 1 = (xs,[])
| otherwise (head xs:fst p,head (tail xs):snd p)
where p = split (drop 2 xs)

1,

Simplify the code as much as you can. In particular, use pattern matching instead
of fst, snd, length, head, tail and drop.

Solution:

split’ :: [a]l -> ([al,[al)

split’ (x1:x2:xs) = (x1:xs1,x2:xs2) where (xsl,xs2) = split’ xs
split’ xs = (xs,[])

(b) (3 points) Define a function merge that merges two sorted lists into a sorted list.

merge :: Ord a => [a] -> [a] —> [al

Solution:

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) | x<=y
| otherwise = y:merge (x:xs) ys

x:merge xs (y:ys)

(c) (3 points) Define a function mergeSort that sorts a list by splitting it into two
parts, recursively sorting the parts, and merging the results.

mergeSort :: Ord a => [a] -> [a]
Solution:

mergeSort [1 = []

mergeSort [x] = [x]

mergeSort xs merge (mergeSort xsl1l) (mergeSort xs2)
where (xsl,xs2) = split xs

3. (7 points)

(a) (2 points) Define a data type Tree a for binary trees that have empty leaves and
a value of type a in each internal node.

Solution:

data Tree a = Empty | Branch a (Tree a) (Tree a)
deriving (Eq,Show) -- optional

(b) (3 points) Define an instance Functor Tree with the expected behaviour for the
standard class Functor, defined as

class Functor f where fmap :: (a->b) -> f a -> f b

Solution:
instance Functor Tree where
fmap f Empty = Empty
fmap f (Branch x 1 r) = Branch (f x) (fmap f 1) (fmap f 1)

(¢) (2 points) Define a function doubleTree that doubles all the numbers in a tree of
numbers.

doubleTree :: Num a => Tree a -> Tree a

Solution:

doubleTree = fmap (*2)

4. (6 points) For each of the following functions, give the most general type, or write No
type if the definition is not type correct in Haskell.

x)

ax = (x,
=x < y+1
)

bxy

cx (y,z) =xyz

Solution:

a:: x > (x,x)
b :: (0rd a,Num a) => a -> a -> Bool
c 1 (y=>z->x)->(y,z)->x -- Cc = uncurry

5. (6 points)
(a) (2 points) Given a function
parse :: Parser a -> String -> Maybe (a,String)

that applies a parser to an input string and returns Nothing if the parser fails, and
Just (a,s) if the parser succeeds, where a is the result of the parser and s is the
remaining unused input. Define

completeParse :: Parser a -> String -> Maybe a

that succeeds and returns Just a only if the parser accepted all of the input string
(i.e., the remaining input is empty). (Hint: you don’t need to know anything more
about the Parser type in order to answer this question.)

Solution:

completeParse p s = case parse p s of
Just (a,"") -> Just a
_ —> Nothing

(b) (4 points) The QuickCheck function vector0f generates a list of a given length,
using a given generator for the elements. Implement two versions of vector0f:

i. Using only standard library functions.
ii. Using recursion directly.

vector0f_i,vector0Of_ii :: Int -> Gen a -> Gen [a]

Solution:

vector0Of_i n g = sequence (replicate n g)

return []

do x <- g
xs <- vectorOf_ii (n-1) g
return (x:xs)

vector0f_ii 0 g
vectorO0f_ii n g

return []
(1) <$> g <x> vector0f_ii’ (n-1) g

vector0f_ii’ 0 g
vector0f_ii’ n g

6. (6 points) The Luhn algorithm is used to check bank card numbers for simple errors
such as mistyping a digit, and proceeds as follows:
e consider each digit as a separate number;
e moving left, double every other number from the second last;
e subtract 9 from each number that is now greater than 9;
e add all the resulting numbers together;
e if the total is divisible by 10, the card number is valid

Define a function validCard and suitable helper functions to check if a bank card
number is valid according to the above algorithm.

validCard :: Integer -> Bool

Examples:
validCard 1784 == True -— 2%1 + 7 + 2%8-9 + 4 == 20
validCard 1874 == False -— 2%1 + 8 + 2¥7-9 + 4 == 19

Solution:

—-- Compact version
validCard = (==0) . (‘mod¢ 10) . sum .
map sub9 . zipWith (*) (cycle [1,2])
reverse . map digitToInt . show
where
sub9 n = if n>9 then n-9 else n

-- More verbose, self-documenting variant

validCard_v2 :: Integer -> Bool
validCard_v2 n = luhn n ‘mod¢ 10 ==
where

luhn = sum . map subtract9 . doubleEveryOther . integerTolList
subtract9 n = if n>9 then n-9 else n

integerToList :: Integer -> [Int]
integerToList = reverse . map (\x->read [x]) . show

doubleEveryOther :: [Int] -> [Int]

doubleEveryQOther [] =[]

doubleEveryOther [d] = [d]

doubleEveryOther (d1:d2:ds) = d1:(2%xd2):doubleEveryOther ds

ﬁl
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Showa where

show : a -> String
class Eqa where
(==), (I7) © a —>a —>Bool
class (Eqa)=>0Orda where
(<), (=9), >3), () a ->a —>Bool
max, min Ta —>a —>a
class (Eqa, Show a) => Num a where
(). (2, () na —>a —>a
negate Da —>a
abs, signum D a —>a
frominteger . Integer ->a
class (Num a, Ord a) => mmm_ a where
toRational ' a —>Rational
class (Real a, Enum 8 = _:Hm@ﬂm_ a where
quot, rem T a —>a ->a
div, mod T a —>a —>a
tolnteger ©a —>lInteger
class (Num a) => _uqmo:o:m_ a where
() .. ->a ->a
fromRational i xm:o:m_ ->a
class (Fractional a) => _u_om::@ a where
exp, log, sqrt Ta —>a
sin, cos, tan D a —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—— numerical functions
even, odd .. (Integral @) => a —> Bool
evenn =n ‘rem' 2=
odd =not . even
—— monadic functions
sequence ::Monad m=>[ma] —>m [a]
sequence = foldr mcons (return 0)
where mconspq= do x<-p
Xs<-q
return (x 1 XS)
sequence_ :Monad m=>[ma]->m()
sequence_ Xs = do sequence xs

return ()

liftM :: (Monad m)=>(@al->r)->mal->mr
litMfml = do x1<-ml
return (f x1)

—— functions on functions

id ta->a

id x =X

const ra->b->a

constx =X

@] i (b ->c) ->(@ ->b) ->a ->c
=\x ->1(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

($) (@ ->b) ->a ->b

f$ x =fx

—— functions on Bools

data Bool = False | True

(&&), () ' Bool ->Bool -—>Bool
True && X =X

False && _ = False

True || _ =True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False
isNothing i Maybe a —> Bool
isNothing = not . isJust
fromJust :»Maybe a —>a
fromJust Justa) = a
maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1]
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe [= Nothing
listToMaybe (a :_) = Justa
catMaybes :<_m<cm al —>[a]

catMaybes Is = [x]Justx <—1Is]

—- functions on pairs

fst t(ab)—>a

fst (x,y) = X

snd t(ab)—>b
snd (x.y) =Yy

swap i (a,b) —> (b,a)

swap (a,b) =(b,a)

curry :((@, b)->c)—>a->b->c
curry fxy = f(x,y)

uncurry > (@->b ->c¢) —>((a, b) —>¢)
uncurry fp = f(fst p) (snd p)

—- functions on lists

map :: (@ —> b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —> [4]
xs ++ys = foldr (1) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X|x<-xs,px]

concat :: [[a]] —> [a]
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last t[al—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init :[a] —> [a]

tal (. :xs) =xs

init [x] = 1|

init(x :xs) =x :initxs
null :: [a] => Bool

null] =True

null(C @) = False

length :[a] —> Int

length = foldr (const (1+)) 0
(" : [a] —>Int ->a
x:)"no =x

(C:xs)hn =xs!l(n-1)

foldr =(@a->b VS >b->[a]—>b
foldr f z 1]
foldr f z (x : xmv = ﬁx (foldr f z xs)

foldl :(a->b vmv ->a->[b]->a
foldl f z 0

foldl f z (x xmv = ﬁo_g_ f(fzx)xs

iterate t(@a->a)->a->[a]

iterate fx = X iterate f (f x)
repeat ra->[a]

repeat x = Xs where xs=x :Xxs
replicate slint—>a->[a]

replicate n x = take n (repeat x)

cycle :[a] =>[a]

cycle] = error"

cycle xs = xs' where xs' = xs ++ xs'’
tails = [a] —> [[a]]
tails xs = Xs : case xs of
0 -
_ :xs' —>tails xs’
take, drop 2 Int —>[a] —> [a]
taken_ |n<=0= 0
take _] = 1
taken (x :xs) =X . take (n—-1) xs
dropnxs |n<=0= xs
drop _] = I
dropn(_ :Xxs) = drop (n—1) xs
splitAt 2 Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 1]
takeWhile p (x I XS)
| px =X . takeWhile p xs
| otherwise = 1]
dropWhile p 1] = 1]
dropWhile p xs@(x : xs’)
| px = dropWhile p xs’

| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
- _m:mw "apa\nbepa\ncepa\n"
- ==['apa’,"bepa’,"cepa’]
- <<oam ‘apa bepa\n cepa"
—— ==["apa","bepa","cepa’]

unlines, unwords :: [String] —> String
—— unlines ["apa”, __cmum__ "cepa"]

- == "apa\nbepa\ncepa"
- c:<<oam ["apa","bepa”,"cepa"]
- == "apa bepa cepa"

reverse :[a] —> [a]
reverse = foldl (flip () 0
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (||) False
any, all i (a —> Bool) —> [a] —> Bool
any p = or.mapp
allp = and.mapp
elem, notElem :: (Eqa)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (I=x)
lookup : (Eqa)=>a->][(a,b)] > Maybe b
lookup key 1] = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

Prelude.cycle: empty list"

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) =>[a] —> a
maximum [] =error" Prelude.maximum: empty list"
maximum (X : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs
zip = [a] => [b] —>[(a,b)]
zip = zIpWith (,)
zipWith i1 (@—>b—>c) —> [a]->[b]->[c]
zipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipWith _ = 1
unzip (@ b)] —> ([al.[b])
unzip
foldr (\(a,b) Amw bs) —>(a:asb:bs)(0 .0)
nub :Eqa=>[a] ->[a]
nub [= 0
nub (X :xs) =
X cnub [y|ly<—-xs,x/=y]
delete ©Ega=>a->[a] —>[a]
delete y 1 = I
delete y (x IXS) =
if x== then xs else x : deleteyxs
() o Ega=> [a] ->[a] —> [a]
\) = foldl (flip o_m_mﬁmv
union 2Ega=>[a] —>[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect 2 Eqa=>[a] —>[a] —>[a]
intersect xs ys = [X]x<=xs,x ‘elem’ ys]
intersperse ::a->[a] —>[a]
——intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]
transpose = [[al] —> [[a]]
- :m:mvomm E 2,3],[4,5,6]]
==[[1,4],[2,5],[3,6]]

ition :: (a —> Bool) —> [a] —> ([a],[a])
on pxs =
er p xs, filter (not . p) xs)

group = Eqa=>[a] —>[[a]]
group = groupBy (==)

groupBy :: (a —>a —> moo_v > [a] —> [[a]]

groupBy _] 0

groupBy eq (x xwv = (X 1ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1 = False
isPrefixOf (x 1XS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x

‘isPrefixOf reverse y
sort ::(Ord a) => [a] —> [a]
sort = foldr insert 1]
insert ::(Ord mv =>a —>[a] —> [a]
insert x : [x]

insert x (y : xmv
if x<=y then x:y:xs else y :insertxxs

—- functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
—-—toUpper 'a’ =="A’

——toLower’Z’ ==z

digitTolnt :: Char —> Int
——digitToInt '8’ ==

intToDigit :: Int => Char
—— intToDigit 3 =="3

ord :: Char —> Int
chr :: Int => Char

—- Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—- the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a=>(a, a) > Gena
—- Generates a random element in the given
—-inclusive range.

oneof :: [Gen a] —> Gen a
—- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —>Gena
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int —=> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

