Parsing Expressions

Slides by Koen Lindstrom Claessen & David Sands

Expressions

» Such as
—5*2+12
— 17+3*(4*3+75)
+ Can be modelled as a datatype

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

Showing and Reading

. bu_ilt-in show
* We have seen how to write [locionlpodticas
ugly results

‘ showExpr :: Expr -> String ‘

Main> showExpr (Add (Num 2) (Num 4))

D447

Main> showExpr (Mul (Add (Num 2) (Num 3)) (Num 4)
(2+3)*4

e This lecture: How to write

readExpr :: String -> Expr

built-in read function
does not match
showExpr

Parsing

+ Transforming a *flat” string into something
with a richer structure is called parsing
— expressions
— programming languages
— natural language (swedish, english, dutch)

* Very common problem in computer
science
— Many different solutions

Expressions

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

* Let us start with a simpler problem
* How to parse

data Expr
= Num Int

but we keep in mind
that we want to parse
real expressions...

Parsing Numbers

‘ number :: String -> Int ‘

Main> number "23”

23

Main> number "apa”

?

Main> number "23+17”
?

Parsing Numbers

Case (1)
and (3) are
similar...

 Parsing a string to a number, ther
cases:

— (1) the string is a number, e.g. "23” ©

— (2) the string is not a number at all, e.g. "apa”

— (3) the string starts with a number, e.g. "17+24”

how to model
these?

type Parser a = String -> Maybe (a, String)

The Big Picture

RefactoredParser

Refactor/generatise Alternative approach

+ Few basic bulding Parsing.hs
blocks (datatype

ReadExpr.hs - Parser as an

dependent) .

I — ;\r;'stange of
« “Brute force” “Combinators” ona
parser.
* Big ugly case
eXPTejSS'O”S- RefactoredReadExpr ReadExprMonadic
* Minimal reuse.

« Afew lines of code « Afew lines of code

Refactor Next lecture
a

Parsing Numbers

‘ number :: Parser Int

| a case
num :: Parser Expr /M
num s = case number s of
Just (n, s’) -> Just (Num n, s’)
Nothing -> Nothing

Main> num "23”
Just (Num 23, ™)
Main> num “apa”
Nothing

Main> num "23+17”
Just (Num 23, "+17”)

Parsing Numbers

‘ number :: Parser Int ‘

Main> number "23”
Just (23, ™)

Main> number "apa”
Nothing

Main> number "23+17”
Just (23, "+17”)

how to
implement?

Parsing Numbers

a helper with an extra
function argument

number :: Parser Int
number (c:s) | isDigit ¢ = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit ¢ = digits (10*n + digitTolnt c) s
digitsn's =(n,s)

import Data.Char

at the top of
your file

Expressions

data Expr
= Num Int
| Add Expr Expr

» Expressions are now of the form

neyqn
=23 a chain of numbers
—7"3+23” with "+”

—"17+3+23+14+0”

Parsing Expressions

‘ expr :: Parser Expr ‘

Main> expr "23”

Just (Num 23, ™)

Main> expr "apa”

Nothing

Main> expr "23+17”

Just (Add (Num 23) (Num 17), ™)
Main> expr "23+17*3”

Just (Add (Num 23) (Num 17), "*3")

Parsing Expressions

start with a
number?
can a parse
another expr?

expr :: Parser Expr
expr s1 = case num s1 of
Just (a,'+': s2) -> case expr s3 of
Just (b,s4) -> Just (Add a b, s4
Nothing -> Just (a, '+":52)

continues with
a+sign?

Expressions

data Expr
= Num Int
| Add Expr Expr
| Mul Expr Expr

» Expressions are now of the form
-"23
—73+23*4”
—7"17*3+23*5*7+14”

a chain of terms

a chain of factors
with ™"

Grammar for Expressions

» Parse Expressions according to the
following BNF grammar:

<expr> = <term> | <term> "+" <expr>
<term> .= <factor> | <factor> "*" <term>
<factor> :="(" <expr>")"| <number>

Parsing Expressions

expr :: Parser Expr
expr s1 = case term s1 of
Just (a,’+':s2) -> case expr s2 of
Just (b,s3) -> Just (Add a b, s3)
Nothing -> Just (a, '+':s2)

term :: Parser Expr
term =?

Parsing Terms

a factor

term :: Parser Expr V
term s1 = case factor s1 of
Just (a, *:s2) -> case term s2 of
Just (b,s3) -> Just (Mul a b, s4)
Nothing -> Just (a,’¥:s2)
r ->r

Horrible cut-and-paste programming!

Better: abstract over the differences between
term and expr and make a more general
function

Parsing Chains

Factor?

chainpopfs=
case p s of
Just (n,c:s') | c == op ->
case chain p op f s' of
Just (m,s") -> Just (f n m,s")
Nothing -> Just (n,c:s')
r->r

factor :: Parser Expr
factor = num

expr, term :: Parser Expr
expr = chain term '+ Add
term = chain factor ™ Mul

Parentheses

» So far no parentheses
+ Expressions look like
-23
—23+5"17
— 23+5*(17+23*5+3)

a factor can be a

parenthesized
expression again

Factor?

factor :: Parser Expr
factor ('(:s) =
case expr s of
Just (a, ’):s1) -> Just (a, s1)
-> Nothing

factor s =nums

Reading an Expr

Main> readExpr "23”

Just (Num 23)

Main> readExpr “apa”
Nothing

Main> readExpr "23+17”

Just (Add (Num 23) (Num 17))

readExpr :: String -> Maybe Expr
readExpr s = case expr s of

Just (a,””) -> Just a
-> Nothing

Alternative number parsing

number :: Parser Int
number (c:s) | isDigit ¢ = Just (n,s’)
where n = read $ takeWhile isDigit (c:s)
s’ = dropWhile isDigit s

number _ = Nothing

Summary

» Parsing becomes easier when

— Failing results are explicit

— A parser also produces the rest of the string
+ Case expressions

— To look at an intermediate result
+ Higher-order functions

— Avoid copy-and-paste programming

The Code (1)

readExpr :: String -> Maybe Expr
readExpr s = case expr s of

Just (a,””) -> Just a
-> Nothing

expr, term :: Parser Expr
expr = chain term '+ Add
term = chain factor ™ Mul

factor :: Parser Expr
factor ('(:s) =
case expr s of
Just (a, ’):s1) -> Just (a, s1)
_ -> Nothing
factor s = num s

The Code (2)

chainpopfs=
case p s of
Just (n,c:s2) | ¢ == op ->
case chain p op f s2 of
Just (m,s3) -> Just (f n m,s3)
Nothing -> Just (n,c:s2)
r->r

number :: Parser Int
number (c:s) | isDigit ¢ = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit ¢ = digits (10*n + digitTolnt c) s
digitsn's =(n,s)

Refactoring the Parser: First
Attempt

Many operations in our Parser can be made
more general

* more reuse, less clutter

Here we refactor the definition into

+ Basic building blocks for parsers
(dependent on the type of our Parser)

» Combinators: building blocks for making
parsers from other parsers (independent
of the type of Parser)

The Big Picture

Alternative approach

Refactor/generalise

ReadExpr.hs

* “Brute force”
parser.

* Big ugly case
expressions.

* Minimal reuse.

Refactor

RefactoredParser

» Few basic bulding
blocks (datatype
dependent)
«Parser
“Combinators”

RefactoredReadExpr

« Afew lines of code

Parsing.hs
« Parser as an

instance of
Monad

ReadExprMonadic

« Afew lines of code

Next lecture
a

A New Type for Parsers

Make parsers into a new type:

‘ data Parser a = P (String -> Maybe (a,String))

Need this for later to:

+ hide inner workings
+ add to class Monad

Now we need a function to apply a parser:

parse :: Parser a -> String -> Maybe (a,String)
parse (Pp)s=ps

Basic parsers (1)

Always succeeds

in producing an a
without
consuming any of
the input string

succeed :: a -> Parser a
succeed a = P $ \s -> Just(a,s)

failure :: Parser a
failure = P $ \s -> Nothing

item = P $ \s -> case s of
(c:s") -> Just (c,s")
" -> Nothing

parses a
single
Char

Not so useful on their own — but will be handy
in combination with other parsers...

Basic Parsers

Lets define some functions to build some
basic parsers

sat :: (Char -> Bool) -> Parser Char

sat prop = P $ \s ->
case s of
(c:cs) | prop ¢ -> Just (c,cs)
_ -> Nothing
digit = sat isDigit

char :: Char -> Parser Char
char x = sat (== x)

will redefine sat later from
more basic parsers

Basic parsers (2)

pmap :: (a -> b) -> Parser a -> Parser b
pmap f p =P $ \s ->
case parse p s of
Nothing -> Nothing
Just (a,s') -> Just (f a ,s")

Main> pmap digitToInt (sat isDigit) "1+2"
Just (1,"+2)")

Basic parsers (2)

(+++) :: Parser a -> Parser a -> Parser a
p+++ q =P $ \s ->

listToMaybe [x | Just x <- [p s, q s]]

the successful
parses

try parsing
both with p
and with q

return the first
successful parse

Example

Main> parse (number +++ succeed 42) "123xxx"
Just (123, "xxx"
Main> parse (number +++ succeed 42) "xxx"
Just (42, "xxx"
Main> map (parse $ sat isDigit +++ char '{')
["{hello", "8{hello", "hello"]
[Just ('[',"hello"),Just ('8',"[hello"),Nothing]

Parse one thing after another

Several ways to parse one thing then another, e.g.

— parse first thing, discard result then parse second thing
(function (>->))

— parse first thing, parse and discard a second thing,
return result of the first (<-<)

— parse the first thing and then parse a second thing in a
way which depends on the value of the first (function
>*>))

— parse a sequence of as many things as possible
(functions zeroOrMore, oneOrMore)

Parse one thing after another

(>->) :: Parser a -> Parser b -> Parser b

throws awg
result of firs

(p>>q) s=P$%\s ->
case parse p s of
Nothing -> Nothing
Just (_, s’) ->q s’

Main> parse (char °[' >-> sat isDigit) “[1+2]”
Just ('1',"+2]")

p >*> f

>*> can be used to define earlier operations

sat :: (Char -> Bool) -> Parser Char
sat p = item >*> \a -> if p a then succeed a
else failure

p>>qg=p>>_->q

Parse one thing after another

>*> :: Parser a -> (a -> Parser b) -> Parser b

p > f=P$\s ->
case parse p s of
Nothing -> Nothing
Just (a,rest) -> parse (f a) rest

Main> parse (digit >*> \a -> sat (>a)) "12xxx"
Just ('2","xxx"
Main> parse (digit >*> \a -> sat (>a)) "1oxxx"

Nothing

Derived Parsers

(>->) :: Parser a -> Parser b -> Parser b

p>>qg=p>> _->q (as before) throws away the J
result of first parser

(<-<) :: Parser a -> Parser b -> Parser a

p <-< g =p >> \a -> q >-> succeed a

throws away the result of second parser

Main> (sat isDigit <-< char '>') "2>xxx"
Just ('2","xxx")

Parsing sequences to lists

(<:>) :: Parser a -> Parser [a] -> Parser [a]
p <:>q=p >> \a -> pmap (a:) q

zeroOrMore,oneOrMore :: Parser a -> Parser [a]

zeroOrMore p = oneOrMore p +++ succeed []
oneOrMore p = p <:> zeroOrMore p

Main> zeroOrMore (sat isDigit) "1234xxxx"

Just ("1234", "xxxx")

Main> zeroOrMore (sat isDigit) "x1234xxx"

Just ("","x1234xxx")

Main> (char '@' <:> oneOrMore (char '+')) "@++xxx"
Just ("@++", "xxx*)

Example:
Building a Parser for Expr

number :: Parse Integer
number = pmap read $ oneOrMore (sat isDigit)

read can't fail here since it is only
applied to a list of digits!

Exercise: extend
to include
negative

numbers too

num :: Parse Expr
num = pmap Num number

Int -> Expr Parser Integer

Building Parsers with Parsers

expr, term, factor :: Parser Expr

expr = chain term '+' Add

term = chain factor '*' Mul

factor = (char '(' >-> expr <-< char ")")
+++ num

chain :: Parser a -> Char -> (a -> a -> a) -> Parser a
chain p ¢ f =

pmap (foldrl f) (p <:> afterFirst)

where afterFirst = zeroOrMore (char c >-> p)

Summary (Refactoring)

* By using higher-order programming we
can build parser combinators (functions
that build parsers from parsers) from
which specific parsers can be quickly
written.

* Next time: Turning parser combinators into
a Monads

