
Test Data Generators

Repeating Instructions

Main> doTwice (print "hello”)
"hello"
"hello"
((),())
Main> dont (print "hello”)

!"#$%&'(%"()(
((!"(*(+,(%"(
(((((-(+,(%"(
(((((.'/0.1(2*3-4(
!"1/(%"()(
((((.'/0.1(24(

An instruction to
compute the given

result

Writing instructions and obeying
them are two different things!

Why Distinguish Instructions?

•  Functions always give the same result for
the same arguments

•  Instructions can behave differently on
different occasions

•  Confusing them (as in most programming
languages) is a major source of bugs
– This concept a major breakthrough in

programming languages in the 1990s
– How would you write !"#$%&' in C?

Monads = Instructions

•  What is the type of doTwice?

5*%16(7%(!"#$%&'(
!"#$%&'(77(5"1*!(*()6(*(-(,6(*(2-3-4(

Whatever kind of
result argument

produces, we get
a pair of them

Even the kind of
instructions can vary!

Different kinds of
instructions, depending on

who obeys them.
IO means operating
system.

QuickCheck Instructions

•  QuickCheck can perform random testing
with values of any type which is in class
Arbitrary

•  For any type a in Arbitrary there is a
random value generator, Gen a

•  Gen is a Monad – so things of type Gen a
are another kind of “instruction”

IO vs Gen
Gen A

•  Instructions to create a
random value of type A

•  Run by the QuickCheck
library functions to
perform random tests

IO A

•  Instructions to build a
value of type A by
interacting with the
operating system

•  Run by the ghc runtime
system

Instructions for Test Data
Generation

•  Generate different test data every time
– Hence need ”instructions to generate an a”
–  Instructions to QuickCheck, not the OS
– Gen a ! IO a

•  Generating data of different types?
80%&9:;'&96(7%(<.-%/.*.=(
,,(/=>'(&?*@@(
&?*@@(<.-%/.*.=(*($;'.'(
((*.-%/.*.=(77(A'1(*(
((BBB(

Sampling

To inspect generators QuickCheck provides
sample :: Gen a -> IO ()

Sample> sample (arbitrary :: Gen Integer)
1
0
-5
14
-3

Say which
type we
want to

generate

Prints (fairly small) test
data QuickCheck might

generate

Sampling Booleans

Sample> sample (arbitrary :: Gen Bool)
True
False
True
True
True
•  Note: the definition of sample is not

important here – it is just a way for
QuickCheck users to “inspect” something
of type Gen a.

Sampling Doubles

Sample> sample (arbitrary :: Gen Double)
-5.75
-1.75
2.16666666666667
1.0
-9.25

Sampling Lists

Sample> sample (arbitrary :: Gen [Integer])
[-15,-12,7,-13,6,-6,-2,4]
[3,-2,0,-2,1]
[]
[-11,14,2,8,-10,-8,-7,-12,-13,14,15,15,11,7]
[-4,10,18,8,14]

Writing Generators

•  We build generators in the same way we
build other instructions (like IO): using
exiting generators, return and do:
Sample> sample (return True)
True
True
True
True
True

Writing Generators

•  Write instructions using do and return:
Main> sample (doTwice (arbitrary :: Gen Integer))
(12,-6)
(5,5)
(-1,-9)
(4,2)
(13,-6)

It’s important that the
instructions are followed
twice, to generate two

different values.

Writing Generators

•  Write instructions using do and return:
Main> sample evenInteger
-32
-6
0
4
0

evenInteger :: Gen Integer
evenInteger =
 do n <- arbitrary
 return (2*n)

Generation Library

•  QuickCheck provides many functions for
constructing generators
Main> sample (choose (1,10) :: Gen Integer)
6
7
10
6
10

Generation Library

•  QuickCheck provides many functions for
constructing generators
Main> sample (oneof [return 1, return 10])
1
1
10
1
1

oneof :: [Gen a] -> Gen a

Generating a Suit

Main> sample rSuit
Spades
Hearts
Diamonds
Diamonds
Clubs

!()((C0%/()(C>*!'@(D(E'*./@(D(F%*G"1!@(D(:?0-@(
((((!'*%+%,-(2C;"$3HI4(

rSuit :: Gen Suit
rSuit = oneof [return Spades,

 return Hearts,
 return Diamonds,
 return Clubs]

QuickCheck chooses one set
of instructions from the list

Generating a Suit

Alternative
definition:

Quiz: define
'?'G'1/@ using
"1'"J(

!()((C0%/()(C>*!'@(D(E'*./@(D(F%*G"1!@(D(:?0-@(
((((!'*%+%,-(2C;"$3HI4(

rSuit :: Gen Suit
rSuit = elements [Spades,

 Hearts,
 Diamonds,
 Clubs]

QuickCheck chooses one of
the elements from the list

Generating a Rank

(
(

!()((K*19()(L0G'.%&(M1/'N'.(
((((((((((D(O*&9(D(80''1(D(P%1N(D(<&'(
((!'*%+%,-(2C;"$3HI4(

.K*19()("1'"J(Q.'/0.1(O*&93(
(((((((((((.'/0.1(80''13(
(((((((((((.'/0.1(P%1N3(
(((((((((((.'/0.1(<&'3(
...........!"(.(+,(&;""@'(2R3ST4(
(((((((((((.'/0.1(2L0G'.%&(.4U(

5*%16(@*G>?'(.K*19(
L0G'.%&(V(
L0G'.%&(W(
L0G'.%&(X(
80''1(
P%1N

Generating a Card

Main> sample rCard
Card Ace Hearts
Card King Diamonds
Card Queen Clubs
Card Ace Hearts
Card Queen Clubs

!()((:*.!()(:*.!(K*19(C0%/(
((((!'*%+%,-(2C;"$3HI4(

.:*.!()((
((!"(.(+,(.K*19(
(((((@(+,(.C0%/(
(((((.'/0.1(2:*.!(.(@4(

Generating a Hand

Main> sample rHand
Add (Card Jack Clubs) (Add (Card Jack Hearts) Empty)
Empty
Add (Card Queen Diamonds) Empty
Empty
Empty

!()((E*1!()(HG>/=(D(<!!(:*.!(E*1!(
((!'*%+%,-(2HI3(C;"$4(

.E*1!()("1'"J((
((((Q.'/0.1(HG>/=3(
(((((!"(&(+,(.:*.!(
((((((((;(+,(.E*1!(
((((((((.'/0.1(2<!!(&(;4U(

Making QuickCheck Use Our
Generators

•  QuickCheck can generate any type which is a
member of class Arbitrary:
5*%16(7%(<.-%/.*.=(
,,(/=>'(&?*@@(
&/(00.1*2%)*(*3.(.$4'*'.
..(*2%)*(*3.55.6',.(.
((@;.%19((((77(*(,6(Q*U(
,,(%1@/*1&'@7(
%1@/*1&'(<.-%/.*.=(24(
%1@/*1&'(<.-%/.*.=(Y""?(
%1@/*1&'(<.-%/.*.=(M1/(
Z(

This tells QuickCheck
how to generate

values

This helps QuickCheck
find small counter-

examples (we won’t be
using this)

Making QuickCheck Use Our
Generators

•  QuickCheck can generate any type of
class Arbitrary

•  So we have to make our types instances
of this class

instance Arbitrary Suit where
 arbitrary = rSuit

Make a
new

instance

!of this class! !for this type!

!where this method! !is defined like this.

Datatype Invariants

•  We design types to model our problem –
but rarely perfectly
– Numeric (-3) ??

•  Only certain values are valid

•  This is called the datatype invariant –
should always be True

validRank :: Rank -> Bool
validRank (Numeric r) = 2<=r && r<=10
validRank _ = True

Testing Datatype Invariants

•  Generators should only produce values
satisfying the datatype invariant:

•  Stating the datatype invariant helps us
understand the program, avoid bugs

•  Testing it helps uncover errors in test data
generators!

prop_Rank r = validRank r

Testing-code needs testing too!

Test Data Distribution

•  We don’t see the test cases when
quickCheck succeeds

•  Important to know what kind of test data is
being used

prop_Rank r = collect r (validRank r)

This property means the same as
validRank r, but when tested,

collects the values of r

Distribution of Ranks
Main> quickCheck prop_Rank
OK, passed 100 tests.
26% King.
25% Queen.
19% Jack.
17% Ace.
7% Numeric 9.
2% Numeric 7.
1% Numeric 8.
1% Numeric 6.
1% Numeric 5.
1% Numeric 2.

We see a summary,
showing how often
each value occured

Face cards occur much
more frequently than

numeric cards!

Fixing the Generator

rRank = frequency
 [(1,return Jack),
 (1,return Queen),
 (1,return King),
 (1,return Ace),
 (9, do r <- choose (2,10)

 return (Numeric r))]

Each alternative is
paired with a
weight determining
how often it is
chosen.

Choose number
cards 9x as often.

Distribution of Hands

•  Collecting each hand generated produces
too much data—hard to understand

•  Collect a summary instead—say the
number of cards in a hand

numCards :: Hand -> Integer
numCards Empty = 0
numCards (Add _ h) = 1 + numCards h

Distribution of Hands

Main> quickCheck prop_Hand
OK, passed 100 tests.
53% 0.
25% 1.
9% 2.
5% 3.
4% 4.
2% 9.
2% 5.

prop_Hand h = collect (numCards h) True

Nearly 80% have no more than
one card!

Fixing the Generator

•  Returning Empty
20% of the time
gives average
hands of 5 cards

rHand = frequency [(1,return Empty),
 (4, do c <- rCard
 h <- rHand
 return (Add c h))]

Main> quickCheck prop_Hand
OK, passed 100 tests.
22% 0.
13% 2.
13% 1.
12% 5.
12% 3.
6% 4.
4% 9.
4% 8.
!

Datatype Invariant?

•  Are there properties that every hand
should have?

prop_Hand h = collect (numCards h) True

We’re not testing any
particular property of

Hands

Testing Algorithms

Testing insert

•  insert x xs—inserts x at the right place in
an ordered list
Main> insert 3 [1..5]
[1,2,3,3,4,5]

•  The result should always be ordered
prop_insert :: Integer -> [Integer] -> Bool
prop_insert x xs = ordered (insert x xs)

Testing insert

Main> quickCheck prop_insert
Falsifiable, after 2 tests:
3
[0,1,-1]

prop_insert :: Integer -> [Integer] -> Property
prop_insert x xs =

 ordered xs ==> ordered (insert x xs)

Of course, the result won’t be
ordered unless the input is

Testing succeeds, but!

Testing insert

•  Let’s observe the test data!

prop_insert :: Integer -> [Integer] -> Property
prop_insert x xs =

 collect (length xs) $
 ordered xs ==> ordered (insert x xs)

Main> quickCheck prop_insert
OK, passed 100 tests.
41% 0.
38% 1.
14% 2.
6% 3.
1% 5.

Why so short???

What’s the Probability a Random
List is Ordered?

Length Ordered?

0

1

2

3

4

100%

100%

50%

17%

4%

Generating Ordered Lists

•  Generating random lists and choosing
ordered ones is silly

•  Better to generate ordered lists to begin
with—but how?

•  One idea:
– Choose a number for the first element
– Choose a positive number to add to it for the

next
– And so on

The Ordered List Generator

".!'.'![%@/(77(A'1(QM1/'N'.U(
".!'.'![%@/()(
((!"(1(+,(*.-%/.*.=(
(((((?%@/\."G(1(
(($4'*'(?%@/\."G(1()(

(((((J.'I0'1&=((
((Q2S3(.'/0.1(QU43(

((((((((((2W3(!"(%(+,(*.-%/.*.=(
(((((((((((((((((1@(+,(?%@/\."G(21(](*-@(%4(
(((((((((((((((((.'/0.1(2171@44U(

Trying it

Main> sample orderedList
[10,21,29,31,40,49,54,55]
[3,5,5,7,10]
[0,1,2]
[7,7,11,19,28,36,42,51,61]
[]

Making QuickCheck use a Custom
Generator

•  Can’t redefine arbitrary: the type doesn’t
say we should use orderedList

•  Make a new type

data OrderedList = Ordered [Integer]

A new type

with a datatype
invariant

Making QuickCheck use a Custom
Generator

•  Make a new type

•  Make an instance of Arbitrary

data OrderedList = Ordered [Integer]
 deriving Show

instance Arbitrary OrderedList where
 arbitrary =
 do xs <- orderedList
 return (Ordered xs)

Testing insert Correctly

prop_insert x (Ordered xs) =
 ordered (insert x xs)

Main> quickCheck prop_insert
OK, passed 100 tests.

prop_insert :: Integer -> OrderedList -> Bool

Collecting Data

prop_insert x (Ordered xs) =
 collect (length xs) $
 ordered (insert x xs)

Main> quickCheck prop_insert
OK, passed 100 tests.
17% 1.
16% 0.
12% 3.
12% 2!.

Wide variety of lengths

Summary

•  We have seen how to generate test data
for quickCheck
– Custom datatypes (Card etc)
– Custom invariants (ordered lists)

•  Seen that IO A and Gen A are members
of the Monad class (the class of
“instructions”)

•  Later: how to create our own
“instructions” (i.e. creating an instance of
Monad)

Reading

•  About I/O:
– Chapter 9 (Hutton)
– Chapter 18 (Thompson)

•  About QuickCheck: read the manual linked
from the course web page.
– There are also several research papers about

QuickCheck, and advanced tutorial articles.

