
1

Programming IO

a + b = b + a ?

Think of programming language.
Imagine a program which contains

f()	
 +	
 g()	

where all you know is that f and g both

return integers
Can you safely swap f and g?

g()	
 +	
 f()	

Or can they be computed in parallel?

When is a function a function?

In most programming languages, no,
because functions are not really functions in
the mathematical sense.

e.g., Python: input()	
 +	
 input()	

Haskell is a pure functional language.
Functions really are functions.
So how can Haskell be pure and still interact
with the outside world?

Let’s run a Haskell program…

•  What’s the type of that result???

A Much Simpler Example

•  Writes baz to the file called foo.
•  No result displayed—wonder why not?

Prelude> writeFile "foo" "baz"

Prelude>

What’s ”foo”?

•  A String is a list of characters
•  A character (Char) corresponds more-or-

less to a key on the keyboard.
•  Examples: ’a’, ’1’, ’ ’

Prelude> :t "foo"
"foo" :: [Char]
Prelude> :i String
-- type constructor
type String = [Char]

Huh? I
thought it

was a String

A type synonym

2

What’s writeFile?

•  When GHCi finds an expression of IO
type, it obeys the instructions instead of
printing them.

Prelude> :i writeFile
writeFile :: FilePath -> String -> IO ()

Just a
String

INSTRUCTIONS to
the operating system

to write the file

An Analogy

•  Instructions:

•  Value:

Take this card, go to a Bankomat.
Put in the card.

Enter this code, select 500kr.
Take the money and the card.

Which would
you rather

have?

Instructions with Results

•  Instructions can have results:

•  readFile ”foo” is not a String, and no String
can be extracted from it

•  But it can be used as part of more
complex instructions, to compute a String

Prelude> :i readFile
readFile :: FilePath -> IO String

Instructions for
computing a String

Just as no 500:- can be
extracted from a bank card

Combining Instructions

•  We combine instructions using do:

•  readFile fromA is an IO String
•  But contents is just a String
•  writeFile toB (readFile fromA)

copyFile fromA toB =
 do contents <- readFile fromA
 writeFile toB contents

”First follow
readFile

instructions,
call the result

contents,
then follow
writeFile

instructions”

Example: Displaying Instruction
Results

Main> display (readFile "foo")
"baz"
Main> display (writeFile "foo" "bar")
()

display io =
 do result <- io
 print result

Follow the
instructions to get a
value, then print it

Repeating Instructions

Main> display (doTwice (print "hello"))
"hello"
"hello"
((),())
Main> display (dont (print "hello"))
()

doTwice	
 io	
 =	

	
 	
 do	
 a	
 <-­‐	
 io	

	
 	
 	
 	
 	
 b	
 <-­‐	
 io	

	
 	
 	
 	
 	
 return	
 (a,b)	

dont	
 io	
 =	

	
 	
 	
 	
 return	
 ()	

An instruction to
compute the given

result

Writing instructions and obeying
them are two different things!

3

Why Distinguish Instructions?

•  Functions always give the same result for
the same arguments

•  Instructions can behave differently on
different occasions

•  Confusing them (as in most programming
languages) is a major source of bugs
– This concept a major breakthrough in

programming languages in the 1990s
– How would you write doTwice in C?

Monads = Instructions

•  What is the type of doTwice?

Main>	
 :i	
 doTwice	

doTwice	
 ::	
 Monad	
 a	
 =>	
 a	
 b	
 -­‐>	
 a	
 (b,b)	

Whatever kind of
result argument

produces, we get
a pair of them

Even the kind of
instructions can vary!

Different kinds of
instructions, depending on

who obeys them.
IO means operating
system.

Monads = Instructions

•  A new built-in type
–  IO a

•  Standard functions:
– putStr :: String -> IO ()
–  readFile :: FilePath -> IO String
– writeFile :: FilePath -> String -> IO ()
– …

() is the ”empty tuple”
– no interesting

contents

Instructions to the
Operating System

Combining Instructions

•  Create larger instructions from smaller
ones

•  Only instructions on top-level are
executed!

revAndSort	
 ::	
 FilePath	
 -­‐>	
 IO	
 Int	

revAndSort	
 file	
 =	

	
 	
 	
 do	
 s	
 <-­‐	
 readFile	
 file	

	
 	
 	
 	
 	
 	
 writeFile	
 (”reversed-­‐”	
 ++	
 file)	
 (reverse	
 s)	

	
 	
 	
 	
 	
 	
 writeFile	
 (”sorted-­‐”	
 ++	
 file)	
 (sort	
 s)	

	
 	
 	
 	
 	
 	
 return	
 (length	
 s)	

An example

•  Suppose:
 lastCommand :: [IO a] -> IO a

lastCommand ios = head (reverse io)
•  What happens:

lastCommand [print ”apa”, print ”bepa”, print ”cepa”]

Sequence

•  Useful functions:
sequence :: [IO a] -> IO [a]
sequence_ :: [IO a] -> IO ()

•  Example:
printTable :: [String] -> IO ()
printTable xs = ?
ghci> printTable [”apa”,”bepa”,”cepa”]

1: apa
2: bepa
3: cepa

4

printTable

printTable	
 ::	
 [String]	
 -­‐>	
 IO	
 ()	

printTable	
 xs	
 =	
 sequence_	
 	

	
 	
 	
 	
 [putStrLn	
 (show	
 i	
 ++	
 ”:”	
 ++	
 x)	

	
 	
 	
 	
 |(x,i)	
 <-­‐	
 zip	
 xs	
 [1..]	
 	

	
 	
 	
 	
]	

printTable

Or equivalently:

printTable	
 ::	
 [String]	
 -­‐>	
 IO	
 ()	

printTable	
 xs	
 =	
 	

	
 	
 sequence_	
 (map	
 putStrLn	
 table)	

 where table = [(show	
 i	
 ++	
 ”:”	
 ++	
 x)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |(x,i)	
 <-­‐	
 zip	
 xs	
 [1..]	
]	

Reading

•  About I/O:
– Chapter 18, Thompson
– Chapter 9, Hutton

•  About QuickCheck: read the manual linked

from the course web page.
– There are also several research papers about

QuickCheck, and advanced tutorial articles.

