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What is Erlang?



What is Erlang?

Erlang combines a functional language with message-passing
features:

• The functional part is sequential, and is used to define the
behavior of processes.

• The message-passing part is highly concurrent: it implements
the actor model, where actors are Erlang processes.

This class covers the functional/sequential part of Erlang.
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Erlang: a minimal history

1973 Hewitt and others develop the actor
model – a formal model of concur-
rent computation

1985 Agha further refines the actor
model

Mid 1980s Armstrong and others at Ericsson
prototype the first version of Erlang
(based on the actor model)

Late 1980s Erlang’s implementation becomes
efficient; Erlang code is used in
production at Ericsson

1998 Ericsson bans Erlang, which be-
comes open-source

Late 2000s Erlang and the actor model make
a come-back in mainstream pro-
gramming
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Erlang in the real world

Erlang has made a significant impact in the practice of concurrent
programming by making the formal actor model applicable to
real-world scenarios.

Initially, Erlang was mainly used for telecommuncation software:

• Ericsson’s AXD301 switch – includes over one million lines of
Erlang code; achieves “nine 9s” availability (99.9999999%)

• cellular communication infrastructure (services such as SMSs)

Recently, it has been rediscovered for Internet communication apps:

• WhatsApp’s communication services are written in Erlang

• Facebook Chat (in the past)
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Why Erlang?

We’ve faced many challenges in meeting the
ever-growing demand for [the WhatsApp] messaging
services, but [...] Erlang continues to prove its capability as a
versatile, reliable, high-performance platform.

Rick Reed –
That’s ‘Billion’ with a ‘B’: Scaling to the next level at WhatsApp

The language itself has many pros and cons, but we
chose Erlang to power [Facebook] Chat because its model
lends itself well to concurrent, distributed, and robust
programming.

Chris Piro – Chat Stability and Scalability
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What is a functional language?

Functional languages are based on elements quite different from
those imperative languages are based on.

Imperative languages – such as
Java – are based on:

• state – variables

• state modifications –
assignments

• iteration – loops

Functional languages – such as
Erlang – are based on:

• data – values

• functions on data – without
side effects

• functional forms – function
composition, higher-order
functions
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What is a functional language?

Functional languages are based on elements quite different from
those imperative languages are based on.

Imperative languages – such as
Java – are based on:

An imperative program is a
sequence of state modifications on
variables.

// compute xn

int power(int x, int n) {

int result = 1;

for (int i = n; i < n; i++)

result *= x;

return result;

}

Functional languages – such as
Erlang – are based on:

A functional program is the
side-effect-free application of
functions on values.

% compute X N

power(X, 0) -> 1;

power(X, N) -> X * power(X, N-1).

In functional programs, variables
store immutable values, which can

be copied but not modified.
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The Erlang shell

You can experiment with Erlang using its shell, which can evaluate
expressions on the fly without need to define complete programs.

$ erl

Erlang R16B03 (erts-5.10.4) [source] [64-bit] [smp:2:2]

Eshell V5.10.4 (abort with ˆG)

1> 1 + 2. % evaluate expression ‘1 + 2’

3

2> c(power). % compile file ‘power.erl’

{ok,power}

3> power:power(2, 3). % evaluate power(2, 3)

8

Notice you have to terminate all expressions with a period. Functions
are normally defined in external files, and then used in the shell.
Compilation targets bytecode by default.

7 / 59



Types



Types, dynamically

A type constrains:

1. The (kinds) of values that an expression can take
2. The functions that can be applied to expressions of that type

For example, the integer type:

1. includes integer values (1, -100, 234, . . . ), but not, say, decimal
numbers (10.3, -4.3311, . . . ) or strings ("hello!", "why not", . . . )

2. supports functions such as sum +, but not, say, logical and

Erlang is dynamically typed:

• programs do not use type declarations
• the type of an expression is only determined at runtime, when

the expression is evaluated
• if there is a type mismatch (for example 3 + false) expression

evaluation fails

Erlang types include primitive and compound data types.
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An overview of Erlang types

Erlang offers eight primitive types:

• Integers: arbitrary-size integers with the usual operations
• Atoms: roughly corresponding to identifiers
• Floats: 64-bit floating point numbers
• References: globally unique symbols
• Binaries: sequences of bytes
• Pids: process identifiers
• Ports: for communication
• Funs: function closures

And three + two compound types (a.k.a. type constructors):

• Tuples: fixed-size containers
• Lists: dynamically-sized containers
• Maps: key-value associative tables (a.k.a. dictionaries) –

experimental feature in Erlang/OTP R17
• Strings: syntactic sugar for sequences of characters
• Records: syntactic sugar to access tuple elements by name 9 / 59



Numbers

Numeric types include integers and floats. We will mainly use
integers, which are arbitrary-size, and thus do not overflow.

EXPRESSION VALUE

3 3 explicit constant (“term”)
1 + 3 4 addition
1 - 3 -2 subtraction
4 * 2 8 multiplication
5 div 4 1 integer division
5 rem 3 2 integer remainder
5 / 4 1.25 float division
power(10,1000) 100000000... no overflow!
2#101 5 101 in base 2

16#A1 161 A1 in base 16
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Atoms

Atoms are used to denote distinguished values; they are similar to
symbolic uninterpreted constants. An atom can be:

• a sequence of alphanumeric characters and underscores,
starting with a lowercase letter, or

• an arbitrary sequence of characters (including spaces and
escape sequences) between single quotes

Examples of valid atoms:

x

a_Longer_Atom

’Uppercase_Ok_in_quotes’

’This is crazy!’

true
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Booleans

In Erlang there is no Boolean type; instead, the atoms true and false

are conventionally used to represent Boolean values.

OPERATOR MEANING

not negation
and conjunction (evaluates both arguments/eager)
or disjunction (evaluates both arguments/eager)
xor exclusive or (evaluates both arguments/eager)
andalso conjunction (short-circuited/lazy)
orelse disjunction (short-circuited/lazy)

Examples:

true or (10 + false) % error: type mismatch in second argument

true orelse (10 + false) % true: only evaluates first argument
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Relational operators

Erlang’s relational operators have a few syntactic differences with
those of most other programming languages.

OPERATOR MEANING

< less than
> greater than
=< less than or equal to
>= greater than or equal to
=:= equal to
=/= not equal to
== numeric equal to
/= numeric not equal to

Examples:

3 =:= 3 % true: same value, same type

3 =:= 3.0 % false: same value, different type

3 == 3.0 % true: same value, type not checked
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Order between different types

Erlang defines an order relationship between values of any type.
When different types are compared, the following order applies:

number < atom < reference < fun < port < pid < tuple < map < list

Thus, the following inequalities hold:

3 < true % number < atom

3 < false % number < atom

999999999 < infinity % number < atom

100000000000000 < epsilon % number < atom

When comparing lists to lists and tuples to tuples:

• comparison is by size first;

• two lists or two tuples with the same size are compared element
by element, and satisfy the comparison only if all pairs satisfy it.
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Tuples

Tuples denote ordered sequences with a fixed (but arbitrary for each
tuple instance) number of elements. They are written as
comma-separated sequences enclosed in curly braces. Examples of
valid tuples:

{ } % empty tuple

{ 10, 12, 98 }

{ 8.88, false, aToM } % elements may have different types

{ 10, { -1, true } } % tuples can be nested

Functions on a tuple T:
FUNCTION RETURNED VALUE

element(N, T) Nth element of T
setelement(N, T, X) a copy of T, with the Nth element replaced by X

tuple_size(T) number of elements in T

element(2, {a, b, c}) % b: tuples are numbered from 1

setelement(1, {a, b}, z) % {z, b}

tuple_size({ }) % 0
15 / 59



Lists

Lists denote ordered sequences with a variable (but immutable for
any list instance) number of elements. They are written as
comma-separated lists enclosed in square brackets.

Examples of valid lists:

[ ] % empty list

[ 10, 12, 98 ]

[ 8.88, false, {1, 2} ] % elements may have different type

[ 10, [ -1, true ] ] % lists can be nested
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List operators

Some useful functions on lists L:

FUNCTION RETURNED VALUE

length(L) number of elements in L

[H | L] a copy of L with H added as first (“head”) element
hd(L) L’s first element (the “head”)
tl(L) a copy of L without the first element (the “tail”)
L1 ++ L2 the concatenation of lists L1 and L2

L1 -- L2 a copy of L1 with all elements in L2 removed
(with repetitions, and in the order they appear in L1)

Operator | is also called cons; using it, we can define any list:

[1, 2, 3, 4] =:= [1 | [2 | [3 | [4 | []]]]]

hd([H | T]) =:= H

tl([H | T]) =:= T

% this is an example of --

[1, 2, 3, 4, 2] -- [1, 5, 2] =:= [3, 4]
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Strings

Strings are sequences of characters enclosed between double
quotation marks. Strings are just syntactic sugar for lists of character
codes.

String concatenation is implicit whenever multiple strings are
juxtaposed without any operators in the middle.

Using strings ($c denotes the integer code of character c):

"" % empty string =:= empty list

"hello!"

"hello" "world" % =:= "helloworld"

"xyz" =:= [$x, $y, $z] =:= [120, 121, 122] % true

[97, 98, 99] % evaluates to "abc"!
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Records

Records are ordered sequences with a fixed number of elements,
where each element has an atom as name. Records are just
syntactic sugar for tuples where positions are named.

% define ‘person’ record type

% with two fields: ‘name’ with default value "add name"

% ‘age’ without default value (undefined)

-record(person, { name="add name", age })

% ‘person’ record value with given name and age

#person{name="Joe", age=55}

#person{age=35, name="Jane"} % fields can be given in any order

% when a field is not initialized, the default applies

#person{age=22} =:= #person{name="add name", age=22}

% evaluates to ‘age’ of ‘Student’ (of record type ‘person’)

Student#person.age

Erlang’s shell does not know about records, which can only be used in
modules. In the shell, #person{age=7,name="x"} is {person, "x", 7}.
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Variables

Variables are identifiers that can be bound to values; they are similar
to constants in an imperative programming language. A variable
name is a sequence of alphanumeric characters, underscores, and @,
starting with an uppercase letter or an underscore.

In the shell, you can directly bind values to variable:

• Evaluating Var = expr binds the value of expression expr to
variable Var, and returns such value as value of the whole
binding expression

• Each variable can only be bound once
• To clear the binding of variable Var evaluate f(Var)

• Evaluating f() clears all variable bindings
• The anonymous variable _ (“any”) is used like a variable whose

value can be ignored

In modules, variables are used with pattern matching, which we
present later.
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Expressions and evaluation

Expressions are evaluated exhaustively to a value – sometimes
called (ground) term: a number, an atom, a list, . . .

The order of evaluation is given by the usual precedence rules; using
parentheses forces the evaluation order to be inside-out of the
nesting structure.

Some precedence rules to be aware of:

• and has higher precedence than or

• andalso has higher precedence than orelse

• when lazy (andalso, orelse) and eager (and, or) Boolean
operators are mixed, they all have the same precedence and are
left-associative

• ++ and -- are right-associative
• relational operators have lower precedence than Boolean

operators; thus you have to use parentheses in expressions such
as (3 > 0) and (2 == 2.0)
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Precedence rules: examples

3 + 2 * 4 % is 11

3 + (2 * 4) % is 11

(3 + 2) * 4 % is 20

true or false and false % is true

true orelse false andalso false % is true

true or false andalso false % is false

true orelse false and false % is true (why?)
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Patterns

Pattern matching is a flexible and concise mechanism to bind values
to variables. It is widely used in functional programming languages to
define functions on data (especially lists); Erlang is no exception.

A pattern has the same structure as a term, but in a pattern some
parts of the term may be replaced by free variables.

Examples of patterns:

3

A

{X, Y}

{X, 3}

[H | T]

[H | [2]]

Note that a pattern may contain bound variables; in this case,
evaluating the pattern implicitly evaluates its bound variables.
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Pattern matching

Pattern matching is the process that, given a pattern P and a term T,
binds the variables in P to match the values in T according to P and T’s
structure. If P’s structure (or type) cannot match T’s, pattern matching
fails.

PATTERN = TERM BINDINGS

3 = 3 none
A = 3 A: 3

A = B if B is bound then A =:= B; otherwise fail
{X,Y} = 3 fail (structure mismatch)
{X,Y} = {1, 2} X: 1, Y: 2

{X,Y} = {"a",[2,3]} X: "a", Y: [2,3]

[H|T] = [1,2] H: 1, T: [2]

[H|[2]] = [1,2] H: 1

[F,S] = [foo,bar] F: foo, S: bar

{X,Y} = [1,2] fail (type mismatch)
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Pattern matching: notation

Given a pattern P and a term T, we write 〈P , T〉 to denote the pattern
match of T to P. If the match is successful, it determines bindings of

the variables in P to terms. Given an expression E, we write

E〈P , T〉

to denote the term obtained by applying the bindings of the pattern
match 〈P , T〉 to the variables in E with the same names.

If the pattern match fails, E〈P , T〉 is undefined.

Examples:

• (X + Y)〈{X, Y} , {3, 2}〉 is 5

• (T ++ [2])〈[H|T] , [8]〉 is [2]

• H〈[H|T] , []〉 is undefined

The notation E〈P , T〉 is not valid Erlang, but we use it to illustrate
Erlang’s semantics.
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Multiple expressions

Multiple expressions E1, . . . , En can be combined in a compound
expression obtained by separating them using commas. Evaluating
the compound expression entails evaluating all component
expressions in the order they appear, and returning the value of the
last component expression as the value of the whole compound
expression. A single failing evaluation makes the whole compound
expression evaluation fail.

3 < 0, 2. % evaluates 3 < 0

% returns 2

3 + true, 2. % evaluates 3 + true

% fails

R=10, Pi=3.14, 2*Pi*R. % binds 10 to R,

% binds 3.14 to Pi

% returns 62.8
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Multiple expression blocks

Using blocks delimited by begin...end, we can introduce multiple
expressions where commas would normally be interpreted in a
different way.

This may be useful in function calls:

power(2, begin X=3, 4*X end) % returns power(2, 12)

Without begin...end, the expression would be interpreted as calling a
function power with three arguments.
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List comprehensions

List comprehensions provide a convenient syntax to define lists using
pattern matching.

A list comprehension is an expression of the form

[ Expression || P1 <- L1, ..., Pm <-Ln, C1, ..., Cn ]

where each Pk is a pattern, each Lk is a list expression, and each Ck

is a condition (a Boolean expression). Intuitively, each pattern Pk is
matched to every element of Lk, thus determining a binding B; if
substituting all bound values makes all conditions evaluate to true,
the value obtained by substituting all bound values in Expression is
accumulated in the list result; otherwise the binding is ignored.

[X*X || X <- [1, 2, 3, 4]] % is [1, 4, 9, 16]

[X || X <- [1, -3, 10], X > 0] % is [1, 10]

[{A, B} || A <- [carl, sven], B <- [carlsson, svensson]]

% is [{carl, carlsson}, {carl, svensson},

% {sven, carlsson}, {sven, svensson}]
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Modules

A module is a collection of function definitions grouped in a file.
Indeed, modules are the only places where functions can be defined
– they cannot directly be defined in the shell. The main elements of a
module are as follows:

-module(foo). % module with name ‘foo’ in file ‘foo.erl’

-export([double/1,up_to_5/0]). % exported functions

% each f/n refers to the function with name ‘f’ and arity ‘n’

-import(lists, [seq/2]). % functions imported from module ‘lists’

% function definitions:

double(X) -> 2*X.

up_to_5() -> seq(1, 5). % uses imported lists:seq

Compiling and using a module in the shell:

1> c(foo). % compile module ‘foo’ in current directory

{ok,foo}. % compilation successful

2> foo:up_to_5(). % call ‘up_to_5’ in module ‘foo’

[1,2,3,4,5]
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Function definitions: basics

In Erlang, like every functional programming language, functions are
the fundamental units of computation. A function defines how to map
values to other values; unlike in imperative programming languages,
most functions in Erlang have no side effects: they do not change the
state of the program executing them (especially their arguments).

The basic definition of an n-argument function f (arity n), denoted by
f/n, has the form:

head︷ ︸︸ ︷
f(P1, . . . , Pn) ->

body︷︸︸︷
E.

• The function name f is an atom
• The function’s formal arguments P1, . . . , Pn are patterns
• The body E is an expression – normally including variables that

appear in the arguments

identity(X) -> X. % the identity function

sum(X, Y) -> X + Y. % the sum function
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Examples of function definitions

The most fundamental definition of an n-argument function f (arity n),
denoted by f/n, has the form:

f(P1, . . . , Pn) -> E.

Some examples:

zero() -> 0. % integer zero

identity(X) -> X. % identity

sum(X, Y) -> X + Y. % sum

head([H|_]) -> H. % head

tail([_|T]) -> T. % tail

second({_, Y}) -> Y. % 2nd of pair

positives(L) -> [X || X <- L, X > 0]. % filter positive
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Function call/evaluation

Given the definition of a function f/n:

f(P1, . . . , Pn) -> E.

a call expression to f/n has the form:

f(A1, . . . , An)

and is evaluated as follows:

1. for each 1 ≤ k ≤ n, evaluate Ak, which gives a term Tk

2. for each 1 ≤ k ≤ n, pattern match Tk to Pk

3. if all pattern matches are successful, the call expression
evaluates to E〈P1,...,Pn , T1,...,Tn〉

4. otherwise, the evaluation of the call expression fails
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Examples of function calls

DEFINITIONS CALLS VALUE

zero() -> 0.

identity(X) -> X.

sum(X, Y) -> X + Y.

head([H|_]) -> H.

tail([_|T]) -> T.

second({_, Y}) -> Y.

positives(L) ->

[X || X <- L, X > 0].

zero()

identity({1,2,3})

sum(zero(), second({2,3}))

head([])

head([3,4,5])

tail([])

positives([-2,3,-1,6,0])

0

{1,2,3}

3

fail
3

fail
[3,6]

33 / 59



Function definition: clauses

Function definitions can include multiple clauses, separated by
semicolons:

f(P11, . . . , P1n) -> E1;

f(P21, . . . , P2n) -> E2;
...

f(Pm1, . . . , Pmn) -> Em.

A call expression is evaluated against each clause in textual order;
the first successful match is returned as the result of the call.

Therefore, we should enumerate clauses from more to less specific.

lazy_or(true, _) -> true;

lazy_or(_, true) -> true;

lazy_or(_, _) -> false.

this function does not work as expected
unless this clause is listed last 34 / 59



Pattern matching with records

Pattern matching an expression R of record type rec

#rec{f1=P1, ..., fn=Pn} = R

succeeds if, for all 1 ≤ k ≤ n, field fk in R’s evaluation – that is,
R#name.fk – matches to pattern Pk. If record type rec has fields other
than f1, . . . , fn, they are ignored in the match.

Thanks to this behavior, using arguments of record type provides a
simple way to extend data definitions without having to change the
signature of all functions that use that datatype.
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Flexible arguments with records: example

-record(error, {code}).

error_message(#error{code=100}) -> io.format("Wrong address");

error_message(#error{code=101}) -> io.format("Invalid username");

...

error_message(_) -> io.format("Unknown error").

If we want to add more information to the type error, we only have to
change the record definition, and the clauses using the new
information:

-record(error, {code, line_number}).

error_message(#error{code=100}) -> io.format("Wrong address");

error_message(#error{code=101}) -> io.format("Invalid username");

...

error_message(#error{code=C, line_number=L}) ->

io.format("Unknown error ~p on line ~p", [C, L]).

Compare this to the case where we would have had to change
error_message from a unary to a binary function! 36 / 59



Function definition: guards

Clauses in function definitions can include any number of guards
(also called conditions):

f(Pk1, . . . , Pkn) when Ck1, Ck2, . . . -> Ek;

A guarded clause is selected only if all guards Ck1, Ck2, . . . evaluate
to true under the match, that is if Cki〈Pk1,...,Pkn , Tk1,...,Tkn〉
evaluates to true for all guards Cki in the clause.

More generally, two guards can be separated by either a comma or a
semicolon: commas behave like lazy and (both guards have to hold);
semicolon behave like lazy or (at least one guard has to hold).

can_drive(Name, Age) when Age >= 18 -> Name ++ " can drive";

can_drive(Name, _) -> Name ++ " cannot drive".

same_sign(X, Y) when X > 0, Y > 0; X < 0, Y < 0 -> true;

same_sign(_, _) -> false.
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Type checking – at runtime

Since Erlang is dynamically typed, there are cases where we have to
test the actual type of an expression – for example, because a certain
operation is only applicable to values of a certain type.

To this end, Erlang provides several test functions whose names are
self-explanatory:

is_atom/1

is_boolean/1

is_float/1

is_integer/1

is_list/1

is_number/1

is_pid/1

is_port/1

is_tuple/1

Use these only when necessary: in most cases defining implicitly
partial functions is enough.

38 / 59



Function definition: local binding

The expression body in a function definition can include compound
expressions with bindings:

f(Pk1, . . . , Pkn) -> V1=E1, . . . , Vw=Ew, Ek;

Such bindings are only visible within the function definition.

They are useful to define shorthands in the definition of complex
expressions.

volume({cylinder, Radius, Height}) ->

Pi=3.1415,

BaseArea=Pi*Radius*Radius,

Volume=BaseArea*Height,

Volume.
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If expressions (guard patterns)

Ifs provide a way to express conditions alternative to guards (in fact,
ifs are called – somewhat confusingly – guard patterns in Erlang). An
if expression:

if

C1 -> E1;
...

Cm -> Em

end

evaluates to the expression Ek of the first guard Ck in textual order
that evaluates to true; if no guard evaluates to true, evaluating the if

expression fails.

age(Age) ->

if Age > 21 -> adult;

Age > 11 -> adolescent;

Age > 2 -> child;

true -> baby end.
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Case expressions

Cases provide an additional way to use pattern matching to define
expressions. A case expression:

case E of

P1 -> E1;
...

Pm -> Em

end

evaluates to Ek〈Pk , T〉, where E evaluates to T, and Pk is the first
pattern in textual order that T matches to; if T matches no pattern,
evaluating the case expression fails. Patterns may include when

clauses, with the same meaning as in function definitions.

years(X) ->

case X of {human, Age} -> Age;

{dog, Age} -> 7*Age;

_ -> cant_say end.
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Which one should I use?

Having several different ways of defining a function can be confusing.
There are no absolute rules, but here are some guidelines that help
you write idiomatic code:

• the first option to try is using pattern matching directly in a
function’s arguments, using different clauses for different cases

• if multiple different patterns are needed, you may consider using
case expressions to have layered patterns

• you do not need if expressions very often (but it’s good to know
what they mean, and sometimes they may be appropriate)
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Recursion in programming

Recursion is a style of programming where functions are defined in
terms of themselves.

The definition of a function f is recursive if
it includes a call to f (directly or indirectly).

% compute X N

power(X, 0) -> 1;

power(X, N) -> X * power(X, N-1).

recursive call
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Recursion in mathematics

Recursion is a style of definition where concepts are defined in terms
of themselves.

The definition of a concept is recursive if
it defines the concept in terms of an instance of the concept itself.

Definition of natural numbers:

• 0 is a natural number;

• if n is a natural number then n + 1 is a natural number.

recursive/inductive definition
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Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! , n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms
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Recursion: from math to programming

Recursion in programming provides a natural way of implementing
recursive definitions in mathematics.

Factorial of a nonnegative integer n:

n! ,

{
1 if 0 ≤ n ≤ 1

n · (n − 1)! if n > 1
base case

recursive/inductive case

factorial(N), where N =< 1 -> 1; % base case

factorial(N) -> N * factorial(N-1). % recursive case

recursive call
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How does recursion work?

• Each recursive call triggers an independent evaluation of the
recursive function. (Independent means that it works on its own
private copy of actual argument expressions.)

• When a recursive instance terminates evaluation, its value is
used in the calling instance for its own evaluation.

entry factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

12 * 13 * 26

call

call

call

useuseuse

eval

eval

eval
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Recursion as a design technique

Recursion as a programming technique is useful to design programs
using the divide and conquer approach:

To solve a problem instance P, split P into problem instances
P1, . . . ,Pn chosen such that:

1. Solving P1, . . . ,Pn is simpler than solving P directly

2. The solution to P is a simple combination of the solutions to
P1, . . . ,Pn

In functional programming, recursion goes hand in hand with pattern
matching:

• pattern matching splits a function argument’s into smaller bits
according to the input’s structure

• recursive function definitions define the base cases directly, and
combine simpler cases into more complex ones
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Recursive functions: sum of list

Define a function sum(L) that returns the sum of all numbers in L.

1. The base case (the simplest possible) is when L is empty:
sum([]) -> 0

2. Let now L be non-empty: a non empty list matches the pattern
[H|T]

• H is a single number, which we must add to the result
• T is a list, which we can sum by calling sum recursively

sum([]) -> 0; % base case

sum([H|T]) -> H + sum(T). % recursive case

can we switch the order of clauses?

To make the function more robust, we can skip over all non-numeric
elements:

sum([]) -> 0; % base case

sum([H|T]) when is_number(H) -> H + sum(T); % recursive case 1

sum([_|T]) -> sum(T). % recursive case 2
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Recursive functions: last list element

Define a function last(L) that returns the last element of L.

1. When L is empty, last is undefined, so we can ignore this case

2. The simplest case is then when L is one element: last([E]) -> E

3. Let now L be non-empty: a non empty list matches the pattern
[H|T]

• E is the first element, which we throw away
• T is a list, whose last element we get by calling last recursively

last([E]) -> E; % base case

last([_|T]) -> last(T). % recursive case

Can T match the empty list?

No, because if T is [], then the whole list
L has one single element, and hence the first clause would match. To
make this explicit, we could write:

last([E|[]])-> E; % base case

last([_|T]) -> last(T). % recursive case
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Tail recursion

A recursive function f is tail recursive if
the evaluation of f’s body evaluates the recursive call last.

% general recursive:

power(_, 0) ->

1;

power(X, N) ->

X * power(X, N-1).

% tail recursive:

power(X, N) ->

power(X, N, 1).

power(_, 0, Accumulator) ->

Accumulator;

power(X, N, Accumulator) ->

power(X, N-1, X*Accumulator).

overloading: two functions power/2 and power/3

Tail-recursive functions are generally more efficient than
general-recursive functions. When efficiency is not an issue, there is
no need to use a tail-recursive style; but we will use tail-recursive
functions extensively (and naturally) when implementing servers.
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Impure and higher-order
functions



Where are all the statements, assignments, loops?

Statements, assignments, and loops are not available as such in
Erlang. Everything is an expression that gets evaluated.

• (side-effect free) expressions are used instead of statements

• (pure) functions return modified copies of their arguments
instead of modifying the arguments themselves

• one-time bindings are used instead of assignments that change
values to variables

• recursion is used instead of loops

The sparse presence of side effects helps make functional programs
higher level than imperative ones.
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Printing to screen

The expressions we have used so far have no side effects, that is
they do not change the state but simply evaluate to a value. Not all
expressions are side-effect free in Erlang. Input/output is an obvious
exception: to print something to screen, we evaluate an expression
call, whose side effect is printing.

% print the string Format, interpreting control sequences on Data

io:format(Format, Data)

CONTROL SEQUENCE DATA

~B integer
~g float
~s string
~p any Erlang term
~n line break

1> io:format("~s ~B. ~p~n~s ~B~n", ["line", 1, true, "line", 2]).

line 1. true
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Exception handling

Erlang has an exception handling mechanism that is similar to a
functional version of Java’s try/catch/finally blocks.

try Expr of

Success1 -> Expr1;

· · ·
catch

Error1:Fail1 -> Recov1;

· · ·
after After end

• The try blocks behaves like a case block
• If evaluating Expr raises an exception, it gets pattern matched

against the clauses in catch (Errork’s are error types, Failk’s are
patterns, and Recovk’s are expressions)

• Expression After in the after clause always gets evaluated in
the end (but does not return any value: used to close resources)
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Exception handling: example

Function safe_plus tries to evaluate the sum of its arguments; if
evaluation succeeds, it returns the result; if evaluation raises a
badarith exception, it returns false.

safe_plus(X, Y) ->

try X + Y of

N -> N

catch

error:badarith -> false

end.

Example of using it:

1> safe_plus(2, 3).

5

2> safe_plus(2, []).

false
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Functions are values too

Functions are first-class objects in Erlang: they can be passed
around like any other values, and they can be arguments of functions.
A function f/k defined in module m is passed as argument fun m:f/k.

This makes it easy to define functions that apply other functions to
values following a pattern.

% apply function F to all elements in list L

map(F, []) -> [];

map(F, [H|T]) -> [F(H)|map(F,T)].

1> map(fun m:age/1, [12, 1, 30, 56]). % we defined age before

[adolescent,baby,adult,adult]

A function that takes another function as argument is called
higher-order.
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Inline functions

Sometimes it is necessary to define a function directly in an
expression where it is used. For this we can use anonymous
functions – also called lambdas, closures, or funs (the last is Erlang
jargon):

fun

(A1) -> E1;
...

(An) -> En

end

where each Ak is a list of arguments, and each Ek is a body.

% double every number in the list

1> map(fun (X)->2*X end, [12, 1, 30, 56]).

[24,2,50,112]
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Working on lists

Module lists includes many useful predefined functions to work on
lists. These are some you should know about – but check out the full
module documentation at http://erlang.org/doc/man/lists.html.

all(Pred, List) % do all elements E of List satisfy Pred(E)?

any(Pred, List) % does any element E of List satisfy Pred(E)?

filter(Pred, List) % all elements E of List that satisfy Pred(E)

last(List) % last element of List

map(Fun, List) % apply Fun to all elements of List

member(Elem, List) % is Elem an element of List?

reverse(List) % List in reverse order

seq(From, To) % list [From, From+1, ..., To]

seq(From, To, I) % list [From, From+I, ..., ~To]
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Folds

Several functions compute their result by recursively accumulating
values on a list:

sum([]) -> 0;

sum([H|T]) -> H + sum(T).

len([]) -> 0;

len([H|T]) -> 1 + len(T).

We can generalize this pattern into a single higher-order function
fold(F, R, L): starting from an initial value R, combine all elements
of list L using function F and accumulate the result.

fold(_, Result, []) -> Result;

fold(F, Result, [H|T]) -> F(H, fold(F, Result, T)).

Using fold, we can define sum and len:

sum(L) ->

fold(fun (X,Y)->X+Y end, 0, L).

len(L) ->

fold(fun (X,Y)->1+Y end, 0, L).

Erlang module lists offers functions foldr/3 (which behaves like our
fold) and foldl/3 (a tail-recursive version of fold, with the same
arguments).
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