
Models of concurrency
& synchronization algorithms

Lecture 3 of TDA384/DIT391
(Principles of Concurrent Programming)

Carlo A. Furia

Chalmers University of Technology – University of Gothenburg
SP3 2017/2018

Today’s menu

Modeling concurrency

Mutual exclusion with only atomic reads and writes

Three failed attempts

Peterson’s algorithm

Mutual exclusion with strong fairness

Implementing mutual exclusion algorithms in Java

Implementing semaphores

1 / 50

Modeling concurrency

State/transition diagrams

We capture the essential elements of concurrent programs using
state/transition diagrams (also called: (finite) state automata, (finite)
state machines, or transition systems).

• states in a diagram capture possible program states

• transitions connect states according to execution order

Structural properties of a diagram capture semantic properties of the
corresponding program.

2 / 50

States

A state captures the shared and local states of a concurrent program:

counter: 0

.2 .4
cnt: 0 cnt: 0

shared state

local state
of thread t,

including pc .

local state
of thread u,

including pc .

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 3

counter = cnt + 1; 4

3 / 50

States

A state captures the shared and local states of a concurrent program:

counter: 0

.2 .4
cnt: 0 cnt: 0

When unambiguous, we simplify a state with only the essential
information:

0
.2 .4
0 0

4 / 50

Initial states

The initial state of a computation is marked with an incoming arrow:

counter: 0

.1 .3
cnt:⊥ cnt:⊥

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 3

counter = cnt + 1; 4

5 / 50

Final states

The final states of a computation – where the program terminates –
are marked with double-line edges:

counter: 2

. .

done done

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 3

counter = cnt + 1; 4

6 / 50

Transitions

A transition corresponds to the execution of one atomic instruction,
and it is an arrow connecting two states (or a state to itself):

counter: 1

. .3
done cnt:⊥

counter: 1

. .4
done cnt: 1

u

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

cnt = counter; 3

counter = cnt + 1; 4

7 / 50

A complete state/transition diagram

The complete state/transition diagram for the concurrent counter
example explicitly shows all possible interleavings:

0
.1 .3
⊥ ⊥

0
.2 .3
0 ⊥

0
.1 .4
⊥ 0

1
. .3

⊥

1
.1 .

⊥

0
.2 .4
0 0

1
. .4

0

1
.2 .

0

1
. .

1
. .4

1

1
.2 .

1

2
. .

t

u

t

u

t

u

u

t

t

u

u

t

u

t

8 / 50

Counter with locks: state/transition diagram

The state/transition diagrams of the concurrent counter example
using locks shows the absence of race conditions:

0
.1 .3
⊥ ⊥

0
.2 .3
0 ⊥

0
.1 .4
⊥ 0

1
. .3

⊥

1
.1 .

⊥

1
. .4

1

1
.2 .

1

2
. .

0
.2 .4
0 0

1
. .4

0

1
.2 .

0

1
. .

t

u

t

u

u

t

u

t

u

t

t

u

u

t

9 / 50

Reasoning about program properties

The structural properties of a diagram capture semantic properties of
the corresponding program:

mutual exclusion: there are no states where two threads are in their
critical region

deadlock freedom: for every (non-final) state, there is an outgoing
transition

starvation freedom: there is no (looping) path such that a thread
never enters its critical region while trying to do so

no race conditions: all the final states have the same result

We will build and analyze state/transition diagrams only for simple
examples, since it quickly becomes tedious.

Model checking is a technique that automates the construction and
analysis of state/transition diagrams with billions of states. We’ll give
a short introduction to model checking in one of the last classes.

10 / 50

Transition tables

Transition tables are equivalent representations of the information of
state/transition diagrams.

CURRENT NEXT WITH t NEXT WITH u
〈0, .1,⊥, .3,⊥〉 〈0, .2,0, .3,⊥〉 〈0, .1,⊥, .4,0〉
〈0, .2,0, .3,⊥〉 〈1, . , , .3,⊥〉 —
〈0, .1,⊥, .4,0〉 — 〈1, .1,⊥, . , 〉
〈1, . , , .3,⊥〉 — 〈1, . , , .4,1〉
〈1, .1,⊥, . , 〉 〈1, .2,1, . , 〉 —
〈1, . , , .4,1〉 — 〈2, . , , . , 〉
〈1, .2,1, . , 〉 〈2, . , , . , 〉 —
〈2, . , , . , 〉 — —

0
.1 .3
⊥ ⊥

0
.2 .3
0 ⊥

0
.1 .4
⊥ 0

1
. .3

⊥

1
.1 .

⊥

1
. .4

1

1
.2 .

1

2
. .

t

u

t

u

u

t

u

t

11 / 50

Mutual exclusion with only
atomic reads and writes

Locks: recap

A lock is a data structure (an object in Java) with interface:

interface Lock {

void lock(); // acquire lock

void unlock(); // release lock

}

• several threads share the same object lock of type Lock

• multiple threads calling lock.lock() results in exactly
one thread t acquiring the lock:

• t ’s call lock.lock() returns: t is holding the lock
• other threads block on the call lock.lock(), waiting for the lock to

become available

• a thread t that is holding the lock calls lock.unlock()

to release the lock:
• t ’s call lock.unlock() returns; the lock becomes available
• another thread waiting for the lock may succeed in acquiring it

12 / 50

Mutual exclusion without locks

Can we achieve the behavior of locks using only atomic instructions –
reading and writing shared variables?

• It is possible

• But it is also tricky!

We present some classical algorithms for mutual exclusion using only
atomic reads and writes.

The presentation builds up to the correct algorithms in a series of
attempts, which highlight the principles that underlie how the
algorithms work.

13 / 50

The mutual exclusion problem – reprise

Given N threads, each executing:

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

now protocols can use
only reads and writes
of shared variables

Design the entry and exit protocols to ensure:

• mutual exclusion
• freedom from deadlock
• freedom from starvation

Initially we limit ourselves to N = 2 threads t0 and t1.
14 / 50

Busy waiting

In the pseudo-code, we will use the shorthand

await (c) , while (!c) {}

to denote busy waiting (also called spinning):

• keep reading shared variable c as long as it is false

• proceed when it becomes true

Note that busy waiting is generally inefficient (unless typical waiting
times are shorter than context switching times), so you should avoid
using it. We use it only because it is a good device to illustrate the
nuts and bolts of mutual exclusion protocols.

Note that await is not a valid Java keyword – that is why we highlight
it in a different color – but we will use it as a shorthand for better
readability.

15 / 50

Mutual exclusion with only
atomic reads and writes

Three failed attempts

16 / 50

Two-thread mutual exclusion: first attempt

Use Boolean flags enter[0] and enter[1]:

• each thread waits until the other thread is not trying to enter the
critical section

• before thread tk is about to enter the critical section, it sets
enter[k] to true

boolean[] enter = {false, false};

thread t0 thread t1
1 while (true) {

2 // entry protocol

3 await (!enter[1]);

4 enter[0] = true;

5 critical section { ... }

6 // exit protocol

7 enter[0] = false;

8 }

while (true) { 9

// entry protocol 10

await (!enter[0]); 11

enter[1] = true; 12

critical section { ... } 13

// exit protocol 14

enter[1] = false; 15

} 16

17 / 50

The first attempt is incorrect!

The first attempt does not guarantee mutual exclusion: t0 and t1 can
be in the critical section at the same time.

t0 t1 SHARED

1 pc0 : await (!enter[1]) pc1 : await (!enter[0]) enter : false, false

2 pc0 : enter[0] = true pc1 : await (!enter[0]) enter : false, false

3 pc0 : enter[0] = true pc1 : enter[1] = true enter : false, false

4 pc0 : critical section pc1 : enter[1] = true enter : true, false

5 pc0 : critical section pc1 : critical section enter : true, true

The problem seems to be that await is executed before setting enter,
so one thread may proceed ignoring that the other thread is also
proceeding.

18 / 50

Two-thread mutual exclusion: second attempt

When thread tk wants to enter the critical section:

• it first sets enter[k] to true
• then it waits until the other thread is not trying to enter the critical

section

boolean[] enter = {false, false};

thread t0 thread t1
1 while (true) {

2 // entry protocol

3 enter[0] = true;

4 await (!enter[1]);

5 critical section { ... }

6 // exit protocol

7 enter[0] = false;

8 }

while (true) { 9

// entry protocol 10

enter[1] = true; 11

await (!enter[0]); 12

critical section { ... } 13

// exit protocol 14

enter[1] = false; 15

} 16

19 / 50

The second attempt may deadlock!

The second attempt:

• guarantees mutual exclusion: t0 is in the critical section iff
enter[1] is false, iff t1 has not set enter[1] to true, iff t1 has not
entered the critical section (t1 has not executed line 11 yet)

• does not guarantee freedom from deadlocks

t0 t1 SHARED

1 pc0 : enter[0] = true pc1 : enter[0] = true enter : false, false

1 pc0 : await (!enter[1]) pc1 : enter[0] = true enter : true, false

2 pc0 : await (!enter[1]) pc1 : await (!enter[0]) enter : true, true

The problem seems to be that there are two variables enter[0] and
enter[1] that are accessed independently, so each thread may be
waiting for permission to proceed from the other thread.

20 / 50

Two-thread mutual exclusion: third attempt

Use one single integer variable yield:

• thread tk waits for its turn – when yield is not k , that is when the
other thread is yielding

• when it is done with its critical section, it taps in the other thread

int yield = 0 || 1; // initialize to either value

thread t0 thread t1
1 while (true) {

2 // entry protocol

3 await (yield != 0);

4 critical section { ... }

5 // exit protocol

6 yield = 0;

7 }

while (true) { 8

// entry protocol 9

await (yield != 1); 10

critical section { ... } 11

// exit protocol 12

yield = 1; 13

} 14

21 / 50

The third attempt may starve some thread!

The third attempt:

• guarantees mutual exclusion: t0 is in the critical section iff yield
is 1, iff t1 has set yield to 1, iff t1 has not not entered the critical
section (t0 has not executed line 6 yet)

• guarantees freedom from deadlocks: each thread enables the
other thread, so that a circular wait is impossible

• does not guarantee freedom from starvation: if one stops
executing in its non-critical section, the other thread will starve
(after one last access to its critical section)

In future classes, we discuss how model checking can more
rigorously and systematically verify whether such correctness
properties hold in a concurrent program.

22 / 50

Mutual exclusion with only
atomic reads and writes

Peterson’s algorithm

23 / 50

Peterson’s algorithm

Combine the ideas behind the second and third attempts:

• thread tk first sets enter[k] to true
• but lets the other thread go first – by setting yield

boolean[] enter = {false, false}; int yield = 0 || 1;

thread t0 thread t1

1 while (true) {

2 // entry protocol

3 enter[0] = true;

4 yield = 0;

5 await (!enter[1]

|| yield != 0);

6 critical section { ... }

7 // exit protocol

8 enter[0] = false;

9 }

while (true) { 10

// entry protocol 11

enter[1] = true; 12

yield = 1; 13

await (!enter[0]

|| yield != 1);

14

critical section { ... } 15

// exit protocol 16

enter[1] = false; 17

} 18

works even if
two reads are non-atomic

24 / 50

Peterson’s algorithm

Combine the ideas behind the second and third attempts:

• thread tk first sets enter[k] to true
• but lets the other thread go first – by setting yield

boolean[] enter = {false, false}; int yield = 0 || 1;

thread t0 thread t1

1 while (true) {

2 // entry protocol

3 enter[0] = true;

4 yield = 0;

5 await (!enter[1]

|| yield != 0);

6 critical section { ... }

7 // exit protocol

8 enter[0] = false;

9 }

while (true) { 10

// entry protocol 11

enter[1] = true; 12

yield = 1; 13

await (!enter[0]

|| yield != 1);

14

critical section { ... } 15

// exit protocol 16

enter[1] = false; 17

} 18
works even if
two reads are non-atomic 24 / 50

State/transition diagram of Peterson’s algorithm

f t 1
3 · 17

t t 1
4 · c

t t 1
8 · 14

t t 1
4 · 17

f t 1
3 · c

f t 1
3 · 14

t t 1
5 · 14

t t 1
c · 14

f t ∗
3 · 13

t t 0
5 · 13

f f ∗
3 · 12

t t ∗
4 · 13

t f ∗
4 · 12

t t 1
4 · 14

t t 0
8 · 13

t f 0
c · 12

t f 0
5 · 12

t t 0
5 · 14

t t 0
5 · c

t f 0
8 · 12

t t 0
c · 13

t t 0
5 · 17

t0

t1 t0

t1

t0

t1

t1

t0

t0

t1

t0

t1

t0

t1

t0

t1

t1

t0

t1

t0

t0

t1

t1

t0

t0

t0

t1

t0

t1

t0

t1

t0

t1

t0

t1

25 / 50

Checking the correctness of Peterson’s algorithm

By inspecting the state/transition diagram, we can check that
Peterson’s algorithm satisfies:

mutual exclusion: there are no states where both threads are c –
that is, in the critical section

deadlock freedom: every state has at least one outgoing transition

starvation freedom: if thread t0 is in its critical region, then thread t1
can reach its critical region without requiring thread t0’s
collaboration after it executes the exit protocol

26 / 50

Peterson’s algorithm satisfies mutual exclusion

Instead of building the state/transition diagram, we can also prove
mutual exclusion by contradiction:

• assume t0 and t1 both are in their critical section
• without loss of generality, assume t0 entered it before t1 did
• when t0 enters its critical section, it must be enter[0] == true (t0

set it before)
• then, when t1 enters its critical section – while t0 also is in its

critical section – it must be yield == 0 (otherwise t1 would not
have entered)

• then, t1 cannot have executed the assignment yield = 1 after t0
entered its critical section – it would have prevented t1 from
entering

• however, t1 cannot have executed the assignment yield = 1

before t0 entered its critical section either – because in this case
t0 must have read enter[1] == true && yield == 1, but we have
already established that yield == 0 for t1 to enter

• contradiction! 27 / 50

Peterson’s algorithm is starvation free

Suppose t0 is waiting to enter its critical section. At the same time, t1
must be doing one of four things:

1. t1 is in its critical section: then, it will eventually leave it

2. t1 is in its non-critical section: then, enter[1] == false, so t0 can
enter its critical section

3. t1 is waiting to enter its critical section: then, yield is either 0 or
1, so one thread can enter the critical section

4. t1 keeps on entering and exiting its critical section: this is
impossible because after t1 sets yield to 1 it cannot cycle until t0
has a chance to enter its critical section (and reset turn)

In all possible cases, t0 eventually gets a chance to enter the critical
section, so there is no starvation.

Since starvation freedom implies deadlock freedom:

Peterson’s algorithm is a correct mutual exclusion protocol
28 / 50

Peterson’s algorithm for n threads

Peterson’s algorithm easily generalizes to n threads.

int[] enter = new int[n]; // n elements, initially all 0s

int[] yield = new int[n]; // use n - 1 elements 1..n-1

thread x

1 while (true) {

2 // entry protocol

3 for (int i = 1; i < n; i++) {

4 enter[x] = i; // want to enter level i

5 yield[i] = x; // but yield first

6 await (∀ t != x: enter[t] < i

|| yield[i] != x);
7 }

8 critical section { ... }

9 // exit protocol

10 enter[x] = 0; // go back to level 0

wait until all other threads
are in lower levels

or another thread
is yielding

29 / 50

Peterson’s algorithm for n threads

level 0

level 1

level 2

level n − 2

level n − 1

at most n threads

at most n − 1 threads

at most n − 2 threads

...

at most 2 threads

critical section

30 / 50

Peterson’s algorithm for n threads

Every thread goes through n − 1 levels to enter the critical section:
• when a thread is at level 0 it is outside the

critical section

• when a thread is at level n − 1 it is in the
critical section

• enter[t] indicates the level thread t is
currently in

• yield[l] indicates the thread that entered
level l last

• to enter the next level wait until: there are
no processes in higher levels, or another
process (which entered the current level
last) is yielding

• mutual exclusion: at most n − ` processes
are in level `, thus at most n − (n − 1) = 1
processes in critical section

0

1

2

n − 2

n − 1

at most n threads

at most n − 1 threads

at most n − 2 threads

...

at most 2 threads

critical section

31 / 50

Mutual exclusion with only
atomic reads and writes

Mutual exclusion with strong fairness

32 / 50

Bounded waiting (also called bounded bypass)

Peterson’s algorithm guarantees freedom from starvation, but threads
may get access to their critical section before other threads that have
been waiting longer. To describe this we introduce more precise
properties of fairness:

finite waiting (starvation freedom): when a thread t is waiting to
enter its critical section, it will eventually enter it

bounded waiting: when a thread t is waiting to enter its critical
section, the maximum number of times any other
arriving thread is allowed to enter its critical section
before t is bounded by a function of the number of
contending threads

r -bounded waiting: when a thread t is waiting to enter its critical
section, the maximum number of times any other
arriving thread is allowed to enter its critical section
before t is less than r + 1

first-come-first-served: 0-bounded waiting
33 / 50

The Bakery algorithm

Lamport’s Bakery algorithm achieves mutual exclusion, deadlock
freedom, and first-come-first-served fairness. It is based on the idea
of waiting threads getting a ticket number (like in a bakery, or
everywhere in Sweden ,):

• because of lack of atomicity, two threads may end up with the
same ticket number

• in that case, their thread identifier number is used to force an
order

• the tricky part is evaluating multiple variables (the ticket numbers
of all other waiting processes) consistently

• idea: a thread raises a flag when computing the number; other
threads then wait to compute the numbers

The main drawback, compared to Peterson’s algorithm, is that the
original version of the Bakery algorithm may use arbitrarily large
integers (the ticket numbers) in shared variables.

34 / 50

Implementing mutual exclusion
algorithms in Java

Now that you know how to do it. . .

. . . don’t do it!

Learning how to achieve mutual exclusion using only atomic reads
and writes has educational value, but you should not use it in realistic
programs.

• Use the locks and semaphores available in Java’s standard
libraries

• We will still give an overview of the things to know if you were to
implement Peterson’s algorithm, and similar ones, from the
ground up

35 / 50

Peterson’s lock in Java: 2 threads

class PetersonLock implements Lock {

private volatile boolean enter0 = false, enter1 = false;

private volatile int yield;

public void lock()

{ int me = getThreadId();

if (me == 0) enter0 = true;

else enter1 = true;

yield = me;

while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {} }

public void unlock()

{ int me = getThreadId();

if (me == 0) enter0 = false;

else enter1 = false; }

private volatile long id0 = 0;

volatile is required
for correctness

36 / 50

Peterson’s lock in Java: 2 threads

class PetersonLock implements Lock {

private volatile boolean enter0 = false, enter1 = false;

private volatile int yield;

public void lock()

{ int me = getThreadId();

if (me == 0) enter0 = true;

else enter1 = true;

yield = me;

while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {} }

public void unlock()

{ int me = getThreadId();

if (me == 0) enter0 = false;

else enter1 = false; }

private volatile long id0 = 0;

volatile is required
for correctness

36 / 50

Instruction execution order

When we designed and analyzed concurrent algorithms, we implicitly
assumed that threads execute instructions in textual program order.
This is not guaranteed by the Java language – or, for that matter, by
most programming languages – when threads access shared fields.
(Read “The silently shifting semicolor”
http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice
description of the problems.)

• compilers may reorder instructions based
on static analysis, which does not know
about threads

• processors may delay the effect of writes to
when the cache is committed to memory

37 / 50

http://drops.dagstuhl.de/opus/volltexte/2015/5025/

Instruction execution order

When we designed and analyzed concurrent algorithms, we implicitly
assumed that threads execute instructions in textual program order.
This is not guaranteed by the Java language – or, for that matter, by
most programming languages – when threads access shared fields.
(Read “The silently shifting semicolor”
http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice
description of the problems.)

• compilers may reorder instructions based
on static analysis, which does not know
about threads

• processors may delay the effect of writes to
when the cache is committed to memory

37 / 50

http://drops.dagstuhl.de/opus/volltexte/2015/5025/

Instruction execution order

When we designed and analyzed concurrent algorithms, we implicitly
assumed that threads execute instructions in textual program order.
This is not guaranteed by the Java language – or, for that matter, by
most programming languages – when threads access shared fields.
(Read “The silently shifting semicolor”
http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice
description of the problems.)

• compilers may reorder instructions based
on static analysis, which does not know
about threads

• processors may delay the effect of writes to
when the cache is committed to memory

This adds to the complications of writing low-level concurrent
software correctly.

37 / 50

http://drops.dagstuhl.de/opus/volltexte/2015/5025/

Volatile fields

Accessing a field (attribute) declared as volatile forces
synchronization, and thus prevents any optimization from reordering
instructions in a way that alters the “happens before” relationship
defined by a program’s textual order.

When accessing a shared variable that is accessed concurrently:

• declare the variable as volatile,

• or guard access to the variable with locks (or other
synchronization primitives)

38 / 50

Arrays and volatile

Java does not support arrays whose elements are volatile. This is
why we used two scalar boolean variables in the implementation of
Peterson’s lock.

Workarounds:

• use an object of class AtomicIntegerArray in package
java.util.concurrent.atomic, which guarantees atomicity of
accesses to its elements (the field itself need not be declared
volatile)

• make sure that there is a read to a volatile field before every
read to elements of the shared array, and that there is a write to
a volatile field after every write to elements of the shared array;
this forces synchronization indirectly (may be tricky to do
correctly!)

• explicitly guard accesses to shared arrays with a lock: this is the
high-level solution which we will preferably use

39 / 50

Peterson’s lock in Java: 2 threads, with atomic arrays

class PetersonAtomicLock implements Lock {

private AtomicIntegerArray enter

= new AtomicIntegerArray(2);

private volatile int yield;

public void lock() {

int me = getThreadId();

int other = 1 - me;

enter.set(me, 1);

yield = me;

while (enter.get(other) == 1 && yield == me) {}

}

public void unlock() {

int me = getThreadId();

enter.set(me, 0);

}
40 / 50

Mutual exclusion needs n memory locations

Peterson’s algorithm for n threads uses Θ(n) shared memory
locations (two n-element arrays). One can prove that this is the
minimum amount of shared memory needed to have mutual
exclusion if only atomic reads and writes are available.

This is one reason why synchronization using only atomic reads and
writes is impractical. We need more powerful primitive operations:

• atomic test-and-set operations

• support for suspending and resuming threads explicitly

41 / 50

Test-and-set

The test-and-set operation boolean testAndSet() works on a
Boolean variable b as follows: b.testAndSet() atomically returns the
current value of b and sets b to true.

Java class AtomicBoolean implements test-and-set:

package java.util.concurrent.atomic;

public class AtomicBoolean {

AtomicBoolean(boolean initialValue); // initialize to ‘initialValue’

boolean get(); // read current value

void set(boolean newValue); // write ‘newValue’

// return current value and write ‘newValue’

boolean getAndSet(boolean newValue);

// testAndSet() is equivalent to getAndSet(true)

}
42 / 50

A lock using test-and-set

An implementation of n-process mutual exclusion using a single
Boolean variable with test-and-set and busy waiting:

public class TASLock

implements Lock {

AtomicBoolean held

= new AtomicBoolean(false);

public void lock() {

while (held.getAndSet(true))

{} // await (!testAndSet());

}

public void unlock() {

held.set(false); // held = false;

}

}

Variable held is true iff the lock
is held by some thread.
When locking (executing lock):

• as long as held is true
(someone else holds the
lock), keep resetting it to
true and wait

• as soon as held is false,
set it to true – you hold the
lock now

When unlocking (executing
unlock): set held to false.

43 / 50

A lock using test-and-test-and-set

A lock implementation using a single Boolean variable with
test-and-test-and-set and busy waiting:

public class TTASLock

extends TASLock {

@Override

public void lock() {

while (true) {

while(held.get()) {}

if (!held.getAndSet(true))

return;

}

}

}

When locking (executing lock):

• spin until held is false

• then check if held still is
false, and if it is set it to
true – you hold the lock
now; return

• otherwise it means
another thread “stole” the
lock from you; then repeat
the locking procedure from
the beginning

This variant tends to perform better, since the busy waiting is local to
the cached copy as long as no other thread changes the lock’s state.

44 / 50

Implementing semaphores

Semaphores: recap

A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count(); // current value of counter

void up(); // increment counter

void down(); // decrement counter

}

Several threads share the same object sem of type Semaphore:

• initially count is set to a nonnegative value C (the capacity)

• a call to sem.up() atomically increments count by one

• a call to sem.down(): waits until count is positive, and then
atomically decrements count by one

45 / 50

Semaphores with locks

An implementation of semaphores using locks and busy waiting.

class SemaphoreBusy implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1; }

public void down()

{ while (true) {

synchronized (this) {

if (count > 0) // await (count > 0);

{ count = count - 1; return; } } } }

public synchronized int count()

{ return count; }

executed
atomically

does this have
to be synchronized?

why not locking the whole method?

46 / 50

Semaphores with locks

An implementation of semaphores using locks and busy waiting.

class SemaphoreBusy implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1; }

public void down()

{ while (true) {

synchronized (this) {

if (count > 0) // await (count > 0);

{ count = count - 1; return; } } } }

public synchronized int count()

{ return count; }

executed
atomically

does this have
to be synchronized?

why not locking the whole method?

46 / 50

Semaphores with locks

An implementation of semaphores using locks and busy waiting.

class SemaphoreBusy implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1; }

public void down()

{ while (true) {

synchronized (this) {

if (count > 0) // await (count > 0);

{ count = count - 1; return; } } } }

public synchronized int count()

{ return count; }

executed
atomically

does this have
to be synchronized?

why not locking the whole method?

46 / 50

Semaphores with locks

An implementation of semaphores using locks and busy waiting.

class SemaphoreBusy implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1; }

public void down()

{ while (true) {

synchronized (this) {

if (count > 0) // await (count > 0);

{ count = count - 1; return; } } } }

public synchronized int count()

{ return count; }

executed
atomically

does this have
to be synchronized?
yes if count is not volatile

why not locking the whole method?
it must release the lock to other threads!

46 / 50

Suspending and resuming threads

To avoid busy waiting, we have to rely on more powerful
synchronization primitives than only reading and writing variables. A
standard solution uses Java’s explicit scheduling of threads

• calling wait() suspends the currently running thread
• calling notify() moves one (nondeterministically chosen)

blocked thread to the ready state
• calling notifyAll() moves all blocked threads to the ready state

readynew

blocked

running terminate

resume

suspend

wait()
notify()

notifyAll()

Waiting and notifying only affects the threads that are locked on the
same shared object (using synchronized blocks or methods). 47 / 50

Weak semaphores with suspend/resume

An implementation of weak semaphores using wait() and notify().

class SemaphoreWeak implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1;

notify(); } // wake up a waiting thread

public synchronized void down() throws InterruptedException

{ while (count == 0) wait(); // suspend running thread

count = count - 1; } // now count > 0

public synchronized int count()

{ return count; }

in general, wait must be called in a loop in case of spurious wakeups;
this is not busy waiting (and is needed under Java’s implementation)

since notify is nondeterministic
this is a weak semaphore

48 / 50

Weak semaphores with suspend/resume

An implementation of weak semaphores using wait() and notify().

class SemaphoreWeak implements Semaphore {

private int count;

public synchronized void up()

{ count = count + 1;

notify(); } // wake up a waiting thread

public synchronized void down() throws InterruptedException

{ while (count == 0) wait(); // suspend running thread

count = count - 1; } // now count > 0

public synchronized int count()

{ return count; }
in general, wait must be called in a loop in case of spurious wakeups;
this is not busy waiting (and is needed under Java’s implementation)

since notify is nondeterministic
this is a weak semaphore

48 / 50

Strong semaphores with suspend/resume

An implementation of strong semaphores using wait() and
notifyAll().

class SemaphoreStrong implements Semaphore {

public synchronized void up()

{ if (blocked.isEmpty()) count = count + 1;

else notifyAll(); } // wake up all waiting threads

public synchronized void down() throws InterruptedException

{ Thread me = Thread.currentThread();

blocked.add(me); // enqueue me

while (count == 0 || blocked.element() != me)

wait(); // I’m enqueued when suspending

// now count > 0 and it’s my turn: dequeue me and decrement

blocked.remove(); count = count - 1; }

private final Queue<Thread> blocked = new LinkedList<>();

private int count;

queue’s head element

FIFO queue

49 / 50

Strong semaphores with suspend/resume

An implementation of strong semaphores using wait() and
notifyAll().

class SemaphoreStrong implements Semaphore {

public synchronized void up()

{ if (blocked.isEmpty()) count = count + 1;

else notifyAll(); } // wake up all waiting threads

public synchronized void down() throws InterruptedException

{ Thread me = Thread.currentThread();

blocked.add(me); // enqueue me

while (count == 0 || blocked.element() != me)

wait(); // I’m enqueued when suspending

// now count > 0 and it’s my turn: dequeue me and decrement

blocked.remove(); count = count - 1; }

private final Queue<Thread> blocked = new LinkedList<>();

private int count;

queue’s head element

FIFO queue

49 / 50

General semaphores using binary semaphores

A general semaphore can be implemented using just two binary
semaphores. Barz’s solution in pseudocode (with capacity> 0).

BinarySemaphore mutex = 1; // protects access to count

BinarySemaphore delay = 1; // blocks threads in down until count > 0

int count = capacity; // value of general semaphore

void up()

{ mutex.down(); // get exclusive access to count

count = count + 1; // increment count

if (count == 1) delay.up(); // release threads blocking on down

mutex.up(); } // release exclusive access to count

void down()

{ delay.down(); // block other threads starting down

mutex.down(); // get exclusive access to count

count = count - 1; // decrement count

if (count > 0) delay.up(); // release threads blocking on down

mutex.up(); } // release exclusive access to count

50 / 50

These slides’ license

© 2016–2018 Carlo A. Furia

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Modeling concurrency
	Mutual exclusion with only atomic reads and writes
	Three failed attempts
	Peterson's algorithm
	Mutual exclusion with strong fairness

	Implementing mutual exclusion algorithms in Java
	Implementing semaphores

