
D
RA
FT

- d
o
no
t c
irc
ul
at
eAn Introduction to Proofs about Concurrent Programs

K. V. S. Prasad
(for the course TDA384/DIT391)
Department of Computer Science

Chalmers University

Lecture 8, Monday 18 Sep 2017

These are only a rough sketch of notes, released now since it will be too late for this
course if we wait till the notes are polished.

1 Examples from Chapter 3 of Ben-Ari’s book

This chapter roughly parallels Chap 3 of Ben-Ari, which analyses a series of programs
using state diagrams. Here, we study the same programs by analysing the text.

• State diagram based proofs - these are easy to understand in principle, though
it is also easy to see that the diagrams quickly become too big for manual analysis.
Large state diagrams are analysed mechanically by tools called model checkers such
as SPIN. (Neither SPIN, nor its modelling language, PROMELA, are examinable
material in our course).

So one goal for us is to learn, if only in principle, how to use a model checker.
Typically, we say what properties we think a program has, and the model checker
hunts for counter-examples. Assertions are one way to state program properties.
These are often enough for safety properties, but will not do for liveness in general.
For that, we need (linear) temporal logic (LTL), covered in later notes.

• Syntactic proofs (i.e., arguing from the program text). We do these here in
parallel with state diagram proofs, but in stages. The first stage uses informal
but hopefully rigorous arguments, with a little propositional calculus notation for
compactness. Simple theorems of propositional calculus are assumed. Temporal
aspects (arguing about coming or previous states) are first treated entirely infor-
mally. Later sections use LTL notation. It is possible to formalise the programming
language semantics, but that is not included here. So our arguments will continue
to be held together by informal steps.

The goal is first to get you to follow the informal reasoning. Can you make your
own arguments? (By the way, no one does formal reasoning before doing the
informal thing first).

1



D
RA
FT

- d
o
no
t c
irc
ul
at
e

1.1 Notation

Let the boolean p2 mean that process p is at label p2, etc. Abusing notation, we
sometimes also write p2 to mean the label p2 itself.

Logical symbols: We use ∨ for inclusive or, ∧ for and, ¬ for not, → for implies, and
↔ for implies and is implied by.

1.2 “Hardware processes”

We have so far worked with an abstract world implemented by run-time support (RTS).
This world consists of entities that we can call “software processes”, events, messages,
atomic actions, and so on. Here, a process can be marked blocked while waiting for
some event, and be unblocked and marked ready by the RTS when the event occurs. So
the command await B can be interpreted as block until B. Only ready processes are
scheduled (given CPU time); blocked processes are not, since they cannot run.

For these software processes, we also introduced semaphores and other abstract syn-
chronisation and communication structures. How these structures and software processes
are implemented by the RTS is not a concern for us here1. We only need to know what
has been implemented. One striking feature of this abstract world is that even for a
ready process, we do not know if it is actually running. A related matter is that we
know nothing about the speed at which any process runs.

By contrast, the world in this chapter is simpler. The processes here can be called
“hardware processes”. Once spawned, these simply run until they terminate: they do not
block. We assume that each process runs on a separate dedicated CPU. We interpret

await B to mean
loop

skip
until B

; that is, keep doing a skip (do nothing) until B becomes

true. This re-formulation is called busy-waiting.

1.3 Definitions: fairness, deadlock, livelock, starvation

Because only one CPU at a time can access a shared variable, we still face issues of
scheduling—not a process onto a CPU, but a CPU to a shared variable by a bus arbitrator
or similar. We assume weak fairness: a scenario is weakly fair if a continually enabled
command will be executed at some point.

Since there is no blocked state, and no blocking command, processes are either run-
ning or terminated. This means in this set-up we cannot have deadlock, which we
define as “everyone blocked”. We can have livelock, which we define as “everyone busy-
waiting”. Note that these definitions differ from those of the textbook (I find those
definitions confusing).

We agree with the textbook’s definition of (individual) starvation: a process can
get stuck forever (busy)-waiting to enter its critical section. A special case is that of

1Some detail can be found in Ben-Ari’s book. For more, see books on Operating Systems (OS), such
as “Operating Systems: Three Easy Pieces”, by Remzi and Andrea Arpaci-Dusseau, 2015.

2

http://pages.cs.wisc.edu/~remzi/OSTEP/


D
RA
FT

- d
o
no
t c
irc
ul
at
e

non-competitive starvation, or NC-starvation, where p starves if q loops in its NCS.
A working equivalence is that in deadlock and livelock, processes mutually starve each

other. In individual starvation, a scenario exists where one particular process starves.
The third attempt below shows a program that can livelock even though no process
NC-starves, i.e., the only starvation possible is mutual.

In the proofs that follow, a basic idea we explore is that of INVARIANTS.

1.4 First attempt, Alg. 3.5, p. 53

The program:

integer turn := 1

p q

loop forever loop forever
p1: await turn=1 q1: await turn=2
p2: turn:=2 q2: turn:=1

We write t for the variable turn, and let t1 mean t = 1 and t2 mean t = 2.
Then we have invariants: T1=t1 ∨ t2 and T2=¬(t1 ∧ t2). The first is established

by noting what values are assigned to t, and the second follows from the nature of
variables—they cannot hold two values simultaneously.

Then it follows that p2 → t1 because p has just got past p1, and any interference
from q can only result in (re)-setting t to 1. Similarly, q2→ t2.

1.4.1 Mutex

We have to show that M=¬(p2 ∧ q2) is invariant. We have p2→ t1→ ¬t2→ ¬q2, and
similarly q2→ ¬p2, so M holds.

1.4.2 Livelock

Let L=p1 ∧ ¬t1 ∧ q1 ∧ ¬t2. Then L contradicts T1. Thus ¬L is an invariant, and since
L defines livelock, we have shown that livelock cannot happen.

1.4.3 Starvation

NC-starvation is possible. If q1 loops in its NCS (before it executes the await, which it
may, according to the conditions of the CS problem), the scenario p1, p2, q1 starves p.
In this scenario, t2 holds forever, so p will get stuck in p1.

1.5 Second attempt, Alg. 3.7, p. 56

The program:

boolean wantp := false, wantq := false

p q

loop forever loop forever
p1: await wantq = false q1: await wantp = false
p2: wantp := true q2: wantq := true
p3: wantp := false q3: wantq := false

3



D
RA
FT

- d
o
no
t c
irc
ul
at
e

We write wp for wantp and wq for wantq.
Note that only p sets wp and only q sets wq. Let T1=(p1 ∨ p2) ↔ ¬wp, and

T3=p3↔ wp. Then T1 and T2 are invariant. Similar invariants hold for q.
Note that we cannot claim p2 → ¬wq even though ¬wq is needed for p to get past

p2, since we do not know where q is. It may just have executed q2.

1.5.1 Mutex

This would require that (p2 ∨ p3)→ ¬(q2 ∨ q3). But to ensure anything about where q
is, we have to ensure somthing about wq. For example, wq → ¬q2. The premise for the
mutex statement tells us nothing about wq. So we cannot prove mutex, and indeed it is
easy to write a scenario where it is broken: p1, q1.

1.5.2 Livelock

Let L=p1∧wq∧q1∧wp. Then L defines livelock, and contradicts T1, so ¬L is invariant.
That is, livelock cannot happen.

1.5.3 Starvation

As in the first attempt above, both the NCS and the pre-protocol are notated q1 in the
abbreviated program. Let S=p1 ∧ wq ∧ q1. If q is looping in its NCS, q1 will always be
true. Can then S be always true? If so, it will show NC-starvation of p. But q1→ ¬wq,
so S is self-contradictory. That is, ¬S is invariant, and p cannot starve this way.

But p can starve if it is only scheduled to look at wq after q2. Is this weakly fair?

4



D
RA
FT

- d
o
no
t c
irc
ul
at
e

1.6 Third attempt, Alg. 3.8, p. 57

The program:

boolean wantp := false, wantq := false

p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp := true q2: wantq := true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp := false q5: wantq := false

We write wp for wantp and wq for wantq. Again, only p sets wp and only q sets wq.
Let T1=(p1 ∨ p2) ↔ ¬wp , and T2=(p3 ∨ p4 ∨ p5) ↔ wp. Then T1 and T2 are

invariant. Similar invariants hold for q.
Note that we cannot claim p4 → ¬wq even though ¬wq is needed for p to get past

p3, since we do not know where q is. It may just have executed q2.

1.6.1 Mutex

We have to show that M=¬(p4∧ q4) is invariant. M holds at the start. Can we go from
a state where M holds to one where it doesn’t? Suppose p is at p4, and q is not already
at q4. To get to q4, we need ¬wp so that q can get past q3. But this contradicts T2. So
M is invariant: mutex is assured.

1.6.2 Livelock

Let L= p3∧wq ∧ q3∧wp; then L defines livelock. But L can be true; nothing in the in-
variants contradicts it, so livelock can happen. A scenario for this is: p1, q1, p2, q2, p3, q3.

1.6.3 Starvation

Let S=p3 ∧ wq ∧ q1. If S can be true, p can be NC-starved. But T1 says q1 → ¬wq,
which contradicts S. So ¬S is invariant; NC-starvation cannot occur.

But can p3 ∧ wq forever, thus starving p, in some other scenario? Since wq ↔
(q3 ∨ q4 ∨ q5) is invariant, this means (q3 ∨ q4 ∨ q5). If either q4 or q5 can hold forever,
individual starvation can result. But q has to pass q4, q5 in finite time. So there is no
individual starvation, but mutual starvation is possible (livelock, with the case q3).

5



D
RA
FT

- d
o
no
t c
irc
ul
at
e

1.7 Fourth attempt, Alg. 3.9, p. 59

The program:

boolean wantp := false, wantq := false

p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp := true q2: wantq := true
p3: while wantq q3: while wantp
p4: wantp := false q4: wantq := false
p5: wantp := true q5: wantq := true
p6: critical section q6: critical section
p7: wantp := false q7: wantq := false

Note that this program has dispensed with the await statement, writing out the
busy-waits explicitly.

We write wp for wantp and wq for wantq. Again, only p sets wp and only q sets wq.
Let T1=(p1 ∨ p2 ∨ p5)↔ ¬wp , and T2=(p3 ∨ p4 ∨ p6 ∨ p7)↔ wp. Then T1 and T2

are invariant. Similar invariants hold for q.
Note that we cannot claim p4 → ¬wq even though ¬wq is needed for p to get past

p3, since we do not know where q is. It may just have executed q2 or q5.

1.7.1 Mutex

We have to show that M=¬(p6∧ q6) is invariant. M holds at the start. Can we go from
a state where M holds to one where it doesn’t? Suppose p is at p6, and q is not already
at q6. To get to q6, we need ¬wp so that q can get past q3. But this contradicts T2,
which says p6→ wp. So M is invariant: mutex is assured.

1.7.2 Livelock

Let L= p3∧wq∧ q3∧wp; then a path where states repeatedly satisfy L defines extended
livelock. But L can be true; nothing in the invariants contradicts it, so livelock can
happen. A scenario for this is: p1, q1, p2, q2, p3, q3, followed by the execution of the
pre-protocol loops p3, p4, p5 and q3, q4, q5 in parallel.

1.7.3 Starvation

Let S=p3 ∧ wq ∧ q1. If S can be true, p can be NC-starved. But T1 says q1 → ¬wq,
which contradicts S. So ¬S is invariant; NC-starvation cannot occur.

But can p3 ∧ wq forever, thus starving p, in some other scenario? Since wq ↔
(q3 ∨ q4 ∨ q6 ∨ q7) is invariant, this means (q3 ∨ q4 ∨ q6 ∨ q7). Suppose p is in its pre-
protocol loop. Either q is also stuck in its pre-protocol loop, or it escapes. In the latter
case, wq is false in q1, so p is stuck forever only if the scheduler never lets p3 execute
when q1. Fair?

6


