
9/23/17

1

Reasoning	about Monitors	
and	Protected Objects

K.	V.	S.	Prasad
Dept	of	Computer	Science

Chalmers	University
Lecture 9,	TDA384/DIT391:	Friday 22	Sep	2017

Correctness	- safety
• A	safety	property	must	always	hold
• In	every	state	of	every	computation

• =	“nothing	bad	ever	happens”
• Typically,	partial	correctness	(Program	is	correct	if	it	terminates)
• E.g.,	“loop	until	head,	toss”	
• sure	to	produce	a	head	if	it	terminates
• But	not		sure	it	will	terminate
• Will	do	so	with	increasing	probability	the	longer	we	go	on

• How	about	“loop	until	sorted,	shuffle	deck”?
• Sure	to	produce	sorted	deck	if	it	terminates
• Needs	much	longer	expected	run	to	terminate

• Can	guarantee	neither	progress	nor	termination

Correctness	- Liveness

•A	liveness property	must	eventually	hold
• Every	computation	has	a	state	where	it	holds

• =	a	good	thing	happens	eventually
• Termination
• Progress	=	get	from	one	step	to	the	next
• Non-starvation	of	individual	process

• Sort	by	shuffle	is	safe	but	cannot	guarantee	liveness -
either	progress	or	termination

(Weak)	Fairness	assumption

•If	at	any	state	in	the	scenario,	a	statement	is	
continually	enabled,	that	statement	will	
eventually	appear	in	the	scenario.
•So	an	unfair	version	of	coin	tossing	cannot	
guarantee	we	will	eventually	see	a	head.
•We	usually	assume	fairness



9/23/17

2

Monitors	=	synchronised objects

• A	type of	monitors	looks	like	a	class with	sync
• An	operation	on	a	monitor

• Looks	atomic
• All	operations	are	mutex w.r.t.	each other

• i.e.,	only one operation	at	a	time

• So	alg	7.1	can only result in	n=2	at	the	end.

Condition Variables	=	named queues

• Mutex?
• Monitors	provide	it,	by	definition	(See alg	7.1)

• But often,	need explicit	synchronisation
• i.e.,	processes wait for	different	events	

• Producer waits till	(someone makes)	buffer notFull
• Consumer waits till	(someone makes)	buffer notEmpty

• They need to	be	unblocked
• when the	corresponding event	occurs

• In	monitors,	each such event
• Has	a	queue associated with	it

• In	fact,	for	the	monitor,	the	”event”	is just	the	queue
• These queues are	called ”condition variables”	

Semaphore	ops

• Signal	(S)
• If	S.	L	=	{}	then	S.V	++																																																																																																											

else		S.L:=	S.L-{q};		q.state :=	ready	 (for	q	in	S.L)																																

•Wait(S)
• If	S.V	>	0	then	S.V	- -

else	S.L:=	S.L	U	{p};		p.state :=	blocked						(p	did	wait)		

Semaphore implemented by	monitor	

• Alg	7.2
• No	explicit	release	of	monitor	lock
• Leave	when done

• waitC always blocks
• This	is	not	the	semaphore’s wait
• When unblocked	by	signal

• Must	wait till	signalling proc leaves monitor

• signalC has	no	effect on	empty queue
• Semaphore signal	always has	an	effect



9/23/17

3

waitC (on	monitor	condition var)
vs	wait on	semaphore
waitC (on	monitor	condition var)
Append p	to	cond
p.State <- blocked
Monitor	release

Wait(S)
If	S.V	>	0	then S.V	:=	S.V-1
else S.L	:=	S.L	+	{p};	block	p

signalC (on	monitor	condition var)
vs	signal	on	semaphore
signalC (on	monitor	condition var)
If	cond not	empty
q	<- head of	queue
ready	q

Signal(S)
If	S.L	empty then S.V	:=	S.V+1
else S.L	:=	S.L	–{q};	ready	q										(for	abitrary q)

Correctness of semaphore by	monitor

• See p	151
• Exactly the	same	as	fig 6.1	(s	6.4)
• Note that	state diagrams	simplify
• Whole operations	are atomic

• Check:	for	well-behaved program
• 4	unreachable states

• blocked-blocked	(deadlock)
• signal-signal	(no	mutex)
• wait-blocked	(deadlock	coming!)

• For	mutex starting with k=1,	and	two user processes
• The	variable values are determined by	the	proc states

Producer-consumer

• Alg	7.3
• All	interesting code gathered in	monitor
• Very simple	user code



9/23/17

4

Immediate resumption

• So	signalling proc cannot again falsify cond
• If signal	is	the	last	op,	allow proc to	leave?

• How?		See protected objects

• Many other choices possible
• Check	what your	language implements

Semaphores	vs monitors:	examples

• Semaphores
• Library- user	returning	book	chooses	sleeper	and	wakes	them
• Prod-cons	– each	wakes	the	other
• Can’t	tell	at	a	glance	what	the	semaphore	is	for

• Mutex?		Synchronisation signal?

• Monitor
• mutex access;	synchronisation by	condition	variables
• Library- users	only	contract	with	the	library

• takes	care	of	returns,	chooses	sleeper	and	wakes	them
• Prod-cons	– each	only	contracts	with	the	buffer

Design	issues	with	monitors

• A	borrower	has	to	wait	(where?)
• The	returner	and	woken	up	borrower

• Can	be	active	together?
• If	not,	who	waits?	Where?

• “Hoare	semantics”(immediate	resumption)
• the	returner	has	to	wait	– where?
• Why?	So	the	borrower	doesn’t	find	book	gone

• “Mesa	semantics”
• Returner	signals	and		leaves,	then	wake	up	borrower

• Who	must	again	check	if	book	is	available

More	monitor	design	issues	

• When	do	you	check	if	book	is	available?
• Why	not	right	away?
• Whatever	you	do	before	that	cannot	change	cond
• Because	that	is	signalled by	the	returner

• So	you	can	check	in	a	cond.var ante-room
• Drop	explicit	signal	by	returner
• Then	who	checks	cond-vars?
• The	system
• check	all	c-v’s	whenever	anyone	leaves



9/23/17

5

So:	protected	objects

• =	monitors	with	cond.	Vars ->	entry	guards
• Call	to	entry	blocks	till	guard	is	true
• No	signals

• Simply	check	all	guards	whenever	a	user	leaves

Readers and	writers

• Alg	7.4
• Not	hard to	follow,	but lots	of	detail

• Readers check	for	no	writers
• But also for	no	blocked	writers

• Gives	blocked	writers	prioroty
• Cascaded release	of blocked	readers

• But only until next writer shows	up

• No	starvation for	either reader or	writer

• Shows	up	in	long proof (sec 7.7,	p	157)
• Read	at	home!

monitor+user are	correct	for	readers-writers	

• Lemma	7.1	Show	that	R>=0	and	W>=0
• Proof:	Initialised to	0.		Increased	in	StartRead and	
StartWrite and	decreased	in	the	End	ops.		So	these	
invariants	only	follow	because	of	user.
• Note:	to	prove	that	StartRead can	only	increase,	we	need	
two	cases	– was	Signal(OktoRead)	invoked?			So	R	will	
increase	by	#OktoRead.
• EndRead might	start	a	writer.		But	this	is	a	brief	digression.		
Corresponding	EndWrite only	after	EndRead terminates.

monitor+user correct	for	readers-writers	- 2

• Theorem	7.2		(R>0		->	W=0)	&	(W<=1)	&(W=1	->	R=0)
• Base	case:	at	start,	the	premises	are	false.
• Steps:	4	ops	without	startC operations	(and	4	with,later).
• StartRead could	falsify	either	implication.		But	the	if	says	W=0
• EndRead could	falsify	R>0	(1st implication	true)	or	make	R=0	
(2nd implication	true).
• StartWrite could	falsify	W<=1	or	W=0,	but	only	operates	when	
W=0	and	R=0.		So	all	true.
• EndWrite can	only	make	W=0.		So	cannot	falsify	anything.



9/23/17

6

monitor+user correct	for	readers-writers	- 3

• Theorem	7.2		(R>0		->	W=0)	&	(W<=1)	&	(W=1	->	R=0)
• Steps:	4	ops	with	startC operations.

• SignalC(OktoRead)	in	StartRead:	only	when	W=0.		So	the	awoken	reader	
finds	the	same.			So	no	implication	falsified.

• SignalC(OktoRead)	in	EndWrite:	only	when	W=0,	by	middle	invariant.		So	
the	awoken	reader	finds	the	same.			So	no	implication	falsified.
• NOTE	EASIER	TO	PROVE	ALL	THREE	INVARIANTS	TOGETHER.

• SignalC(OktoWrite)	in	EndRead:	only	when	R=0.		So	the	awoken	writer	no	
implication	falsified.			W=0	when	EndRead began,	by	first	inv.

• SignalC(OktoWrite)	in	EndWrite:	only	when	W=R=0	and	readers	wait.		So	
the	awoken	writer	no	implication	falsified.	

RW	monitor:	Lemmas	to	prove	no	starvation

•W	waiting	->	R>0	or	W>0
• Base:	true	(no	W	waiting)
• Step:		Preserved	by	StartWrite.		Can	R=0	and	W=0	while	a	W	
waits?	Examine	EndRead and	EndWrite to	see	that	the	inv holds	
after	each	monitor	op.

• R waiting	->	W	waiting	or	W>0
• Base:	true	(no	R	waiting)
• Step	1:		An	R	can	start	waiting	only	if	consequent	is	true.
• Step	2:		Can	consequent	become	false	while	an	R	waits?

• EndWrite makes	W=0	but	the	signals	will	ensure	either	W=1	again,	or	a	
cascade	of	waiting	readers.

Dining	philosophers again

• Alg	7.5

Protected objects

•Monitors	need waitC and	signalC programmed
• Protected objects combine this	with	queueing
• See alg	7.6	for	readers-writers
• Each operation	starts	only when its cond is	met
• Called a	”barrier”

•What happened to	signalC?
• When any op exits,	all	barriers are checked

•DO	EXAMPLES	AND	PROOFS	FOR	PROTECTED	OBJECTS



9/23/17

7

Protected objects (contd.)

• See alg	7.6	(p	164,	s	7.16)
• Tidies up	the	mess

• No	separate	condition variables
• Or	queues for	them
• Or	detailed choices ”immediate release”,	etc.

• The	simplicity of	7.6	is	worth gold!
• Price:	starvation possible
• Can	be	fixed,	at	small	price in	mess	(see exercises)

Ada

• Uses protected objects
• Since the	1980’s

• though the	concept was around earlier
• Thus has	the	cleanest shared memory model

• Also has	a	very good communication model
• Rendezvous

• Ada	was decided carefully through the	1970s
• Open	debates and	process	of	definition

• Has	fallen	away because of	popularity of	C,	etc.
• Use now seen as	a	proprietary secret!

Transition

• Why do we need other models?
• Advent	of	distributed systems
• Mostly by	packages such as	MPI

• Message passing interface

• But Hoare	1978
• arrived before distributed systems
• I	see it	as	the	first	realisation	that

• Atomic	actions,	critical regions,	semaphores,	monitors…
• Can	be	replaced by	just	I/O	as	primitives!


