
9/7/17

1

Monitors	and	Protected Objects
Wed 6	Sep	2017

K.	V.	S.	Prasad
Dept	of	Computer	Science

Chalmers	University
Lecture 4	of TDA384/DIT301,		August	–October 2017

Semaphore recap

• Designed for	CS	problem	or	atomic actions
• (even with	n-proc)
• Avoid busy waiting

• But for	the	producer-consumer problem
• The	correctness of	each proc

• Depends on	the	correctness of	the	other
• Not	modular

• Monitors	modularise synchronisation
• for	shared memory



9/7/17

2

Monitors	=	synchronised objects

• A	type of	monitors	looks	like	a	class with	sync
• An	operation	on	a	monitor
• Looks	atomic
• All	operations	are	mutex w.r.t.	each other

• i.e.,	only one operation	at	a	time

• So	alg	7.1	can only result in	n=2	at	the	end.

Confusions with	O-O	programming

• Monitors	are	static
• They don’t ”send messages”	to	each other

• Processes are	the	running things
• They can enter the	monitor	one at	a	time
• There is	no	queue of	processes waiting to	get	in,

• Only a	set	



9/7/17

3

Monitors	centralise

• Access	to	the	data
• Natural generalisation	of	objects in	OO,	but

• With	mutex
• With	synchronisation conditions

• Could dump everything in	the	kernel
• But this	centralises way too much

• So	monitors	are	a	compromise

Condition Variables	=	named queues

• Mutex?
• Monitors	provide	it,	by	definition	(See alg	7.1)

• But often,	need explicit	synchronisation
• i.e.,	processes wait for	different	events	

• Producer waits till	(someone makes)	buffer notFull
• Consumer waits till	(someone makes)	buffer notEmpty

• They need to	be	unblocked
• when the	corresponding event	occurs

• In	monitors,	each such event
• Has	a	queue associated with	it

• In	fact,	for	the	monitor,	the	”event”	is just	the	queue
• These queues are	called ”condition variables”	



9/7/17

4

Semaphore implemented by	monitor	

• Alg	7.2
• No	explicit	release	of	monitor	lock
• Leave	when done

• waitC always blocks
• This	is	not	the	semaphore’s wait
• When unblocked by	signal

• Must	wait till	signalling proc leaves monitor

• signalC has	no	effect on	empty queue
• Semaphore signal	always has	an	effect

waitC (on	monitor	condition var)
vs	wait on	semaphore
waitC (on	monitor	condition var)
Append p	to	cond
p.State <- blocked
Monitor	release

So	waitC always blocks!

Wait(S)
If	S.V	>	0	then S.V	:=	S.V-1
else S.L	:=	S.L	+	{p};	block	p



9/7/17

5

signalC (on	monitor	condition var)
vs	signal	on	semaphore
signalC (on	monitor	condition var)
If	cond not	empty
q	<- head of	queue
ready	q

Signal(S)
If	S.L	empty then S.V	:=	S.V+1
else S.L	:=	S.L	–{q};	ready	q										(for	abitrary q)

Correctness of semaphore by	monitor

• See p	151	in	book (slide 7.5,	p	164)
• Identical to	fig 6.1,	p	112	in	book (slide 6.4,	p	114)
• Note that	state diagrams	simplify

• Whole operations	are atomic
• Check:	for	well-behaved program

• There are 3	states per	process,	incl.	Blocked
• The	variable values are determined by	the	proc states

• 4	unreachable states
• blocked-blocked (deadlock)
• signal-signal	(no	mutex)
• wait-blocked or	blocked-wait (deadlock coming!)

• For	mutex starting with k=1,	and	two user processes



9/7/17

6

Producer-consumer

• Alg	7.3
• All	interesting code gathered in	monitor
• Very simple	user code

Immediate resumption

• So	signalling proc cannot again falsify cond
• If signal	is	the	last	op,	allow proc to	leave?

• How?		See protected objects

• Many other choices possible
• Check	what your	language implements



9/7/17

7

Semaphores	vs monitors:	examples

• Semaphores
• Library- user	returning	book	chooses	sleeper	and	wakes	them
• Prod-cons	– each	wakes	the	other
• Can’t	tell	at	a	glance	what	the	semaphore	is	for

• Mutex?		Synchronisation signal?

• Monitor
• mutex access;	synchronisation by	condition	variables
• Library- users	only	contract	with	the	library

• takes	care	of	returns,	chooses	sleeper	and	wakes	them
• Prod-cons	– each	only	contracts	with	the	buffer

Design	issues	with	monitors

• A	borrower	has	to	wait	(where?)
• The	returner	and	woken	up	borrower

• Can	be	active	together?
• If	not,	who	waits?	Where?

• “Hoare	semantics”(immediate	resumption)
• the	returner	has	to	wait	– where?
• Why?	So	the	borrower	doesn’t	find	book	gone

• “Mesa	semantics”
• Returner	signals	and		leaves,	then	wake	up	borrower

• Who	must	again	check	if	book	is	available



9/7/17

8

More	monitor	design	issues	

• When	do	you	check	if	book	is	available?
• Why	not	right	away?
• Whatever	you	do	before	that	cannot	change	cond
• Because	that	is	signalled by	the	returner

• So	you	can	check	in	a	cond.var ante-room
• Drop	explicit	signal	by	returner
• Then	who	checks	cond-vars?
• The	system
• check	all	c-v’s	whenever	anyone	leaves

So:	protected	objects

• =	monitors	with	cond.	Vars ->	entry	guards
• Call	to	entry	blocks	till	guard	is	true
• No	signals

• Simply	check	all	guards	whenever	a	user	leaves



9/7/17

9

Readers and	writers

• Alg	7.4
• Not	hard to	follow,	but lots	of	detail
• Readers check	for	no	writers

• But also for	no	blocked writers
• Gives	blocked writers prioroty

• Cascaded release	of	blocked readers
• But only until next writer shows	up

• No	starvation for	either reader or	writer
• Shows	up	in	long proof (sec 7.7,	p	157)
• Read	at	home!

Dining	philosophers again

• Alg	7.5



9/7/17

10

Protected objects

• Monitors	need waitC and	signalC programmed
• Protected objects combine this	with	queueing
• See alg	7.6	for	readers-writers
• Each operation	starts	only when its cond is	met

• Called a	”barrier”
• What happened to	signalC?

• When any op exits,	all	barriers are	checked

Protected objects (contd.)

• See alg	7.6	(p	164,	s	7.16)
• Tidies up	the	mess
• No	separate	condition variables

• Or	queues for	them
• Or	detailed choices ”immediate release”,	etc.

• The	simplicity of	7.6	is	worth gold!
• Price:	starvation possible
• Can	be	fixed,	at	small	price in	mess	(see exercises)



9/7/17

11

Ada

• Uses protected objects
• Since the	1980’s

• though the	concept was around earlier
• Thus has	the	cleanest shared memory model

• Also has	a	very good communication model
• Rendezvous

• Ada	was decided carefully through the	1970s
• Open	debates and	process	of	definition

• Has	fallen	away because of	popularity of	C,	etc.
• Use now seen as	a	proprietary secret!

Transition

• Why do we need other models?
• Advent	of	distributed systems
• Mostly by	packages such as	MPI

• Message passing interface

• But Hoare	1978
• arrived before distributed systems
• I	see it	as	the	first	realisation	that

• Atomic	actions,	critical regions,	semaphores,	monitors…
• Can	be	replaced by	just	I/O	as	primitives!


