9/4/17

Invariants and semaphores
Mon 4 Sep 2017

K. V.S. Prasad
Dept of Computer Science
Chalmers University
Lecture 3 of TDA384/DIT301, August —October 2017

Recap — state diagrams

* (Discrete) computation = states + transitions
* Both sequential and concurrent
« Can two frogs move at the same time? (slide 2.38, p 42)
* We use labelled or unlabelled transitions
* According to what we are modelling
« Chess games are recorded by transitions alone (moves)
« States used occasionally for illustration or as checks
* In message passing, the (labelled) transitions
« Are what we see, from the outside, of a (sub)system
* So they matter more than the states

State diagrams — a reasoning tool

*Note that states (in diagrams and scenarios)
describe variable values before the next
command is executed.

*In concurrent programs, the commands are
tuples, one for each of the processes

*Not all thinkable states are reachable from the
start state

How to program multiple processes

* Concurrent vs. sequential
* Concurrent has more states due to interleaving
* But a concurrent sort program should sort
* No matter which interleaving
* So cut out unwanted interleavings
* through synchronisation (waits)

* Concurrency brings interleaving, which has to be trimmed.

* This is the downside; what was the upside, again?
* Faithful modelling, or speed by parallel processing.




9/4/17

On system design

*What do you want the system to do?
*How do you say this? In what language?
* Logic (requirement)
* or another program (equivalence).
*What does the system do?
*How do you say this?
* Operational semantics
« (walk through a state diagram).

More on system design

*Build the right system (validation)
*Does the formal (math) spec capture user wants?
*Is it consistent? Complete?
*These can be checked before you build anything
*Build the system right (verification)
*Does it do what you want it to?
* According to the spec.

Different kinds of requirement

« Safety:
* Nothing bad ever happens on any path
* Example: mutex
* In no state are p and q in CS at the same time
« If state diagram is being generated incrementally, we see more clearly that this says “in
every path, mutex”
* Liveness
* A good thing happens eventually on every path
* Example: no starvation
 If p tries to enter its CS, it will succeed eventually
+ Often bound up with fairness
* We can see a path that starves, but see it is unfair

Correctness - safety

* A safety property must always hold
+ In every state of every computation

* = “nothing bad ever happens”
« Typically, partial correctness
+ Program is correct if it terminates
* E.g., “loop until head, toss”
« sure to produce a head if it terminates
+ Butnot sure it will terminate
« Will do so with increasing probability the longer we go on
* How about “loop until sorted, shuffle deck”?
+ Sure to produce sorted deck if it terminates
 Needs much longer expected run to terminate
« Can guarantee neither progress nor termination




9/4/17

Correctness - Liveness

* A liveness property must eventually hold
* Every computation has a state where it holds
*=a good thing happens eventually
* Termination
* Progress = get from one step to the next
* Non-starvation of individual process
*Sort by shuffle is safe but cannot guarantee liveness -
either progress or termination

Specification of the critical section problem

*REQUIRE
* At most one process can be in its CS at any time (mutex)

* If more than one process wishes to enter their CS, one
must succeed eventually (no deadlock)

* Any process trying to enter its CS will succeed eventually
(no starvation)
*GIVEN THAT
* A process in its CS will leave eventually (progress)
* Progress in non-CS optional

Pet examples (mostly of CS)

* Passing a door from opposite directions
* If both sleep until the other passes — deadlock
« If both eager — livelock (busy waiting)

* Library

* The knife (atomic; deadlock if fork+knife picked up in either order)
* The printer (grab then print file, or atomic per sheet?)

* Count up to 20

* Max, sort by chemical machine

* Max and grabbing by broadcast

Earlier attempt at the bank problem

flag := free
* ATM code * ATM code
« loop * loop
al: loop until flag=free; b1: loop until flag=free;
a2: flag := busy; b2: flag := busy;
a3: temp := bal; temp--; bal:=temp; b3: temp := bal; temp--; bal:=temp;
a4: flag := free b4: flag := free

Consider the scenario al, b1, a2, b2, ... We get interference.

The solution is that al and a2 must happen in one step.
Atomic action to prevent unwanted interleaving. Can you
solve this with semaphores?




9/4/17

Invariants

* Help to prove loops correct
* Game example with straight and wavy lines
* Example: insertion sort
* Invariant: the array so far is sorted
* Empty array to start
* Every step preserves sort
* To complete, we show termination: when input over.

* Try bubble sort on your own
* Try linear program to extract max of a set

A hardware example — the swap instruction

*Ben-Ari slide 3.23
*Try to show this is correct

*Beautiful example of an invariant —there
is only one green token.

*But there is a busy wait for the green
token.

Semaphore ops

«Signal (S)
o IfS.L={}then SV := SV+1
else S.L:=S.L.-{q}; //forsomeqinS.L
g.state := ready
* Wait(S)
*If SV>0thenSV:=SV-1

else S.L.:=S.LU {p};
p.state := blocked

Semaphore invariants

SV>=0
*S.V = SV.init + #signals - #waits
*Proof by induction

eInitially true

*Only changes by signals and waits




9/4/17

Mergesort using semaphores

* See p 115, alg 6.5 (s 6.8)

* The two halves can be sorted independently
* No need to synch

* Merge, the third process,
* has to wait for both halves

* Note semaphores initialised to 0
« Signal precedes wait
+ Done by process that did not do a wait

* Not a CS problem, but a synchronisation one

Deadlock?

* With higher level of process
* Processes can have a blocked state
« If all processes are blocked, deadlock
* So require: no path leads to such a state
* With independent machines (always running)
* Can have livelock
+ Everyone runs but no one can enter critical section
* So require: no path leads to such a situation

CS by semaphore

« Slides 6.2 through 6.7

* Why 5 states in slide 6.4?

* Mutex means there is no state with p2&q2
« Deadlock would be p1 & q1 & SV=0

CS correctness via sem invariant

* Let #CS be the number of procs in their CS’s.
* Then #CS + k = 1 is an invariant. (writing k for S.V)
* True at start

* Wait decrements k and increments #CS; only one wait possible before a
signal intervenes
« Signal
« Either decrements #CS and increments k
* Or leaves both unchanged
* Since k>=0, #CS <= 1. So mutex.
« If a proc is waiting, k=0. Then #CS=1, so no deadlock.
* No starvation — see next slide




9/4/17

CS correctness (contd.)

* No starvation (if just two processes, p and q)
« If p is starved, it is indefinitely blocked
*So k=0 and p is on the sem queue, and #CS=1
*So qisinits CS, and p is the only blocked process
* By progress assumption, q must exit CS
» Q will signal, which immediately unblocks p
*Why “immediately”?
* The sem. op. is taken to be atomic

Why two proofs?

* The state diagram proof
* Looks at each state
* Will not extend to large systems
* Except with machine aid (model checker)
* The invariant proof
« In effect deals with sets of states
« E.g., all states with one proc is CS satisfy #CS=1
* Better for human proofs of larger systems
* Foretaste of the logical proofs we will see (Ch. 4)

Infinite buffer is correct

* Invariant
* #sem = #buffer
« Oinitially
* Incremented by append-signal
* Need more detail if this is not atomic
+ Decremented by wait-take

* So cons cannot take from empty buffer

 Only cons waits — so no deadlock or starvation, since prod will always
signal

Bounded buffer

*See alg 6.8 (p 119, s 6.12)

* Two semaphores
 Cons waits if buffer empty
* Prod waits if buffer full

* Each proc needs the other to release "its” sem
« Different from CS problem

* ”"Split semaphores”

* Invariant
* notEmpty + notFull = initially empty places




9/4/17

CS correctness via sem invariant
for N>2 processes

* Let #CS be the number of procs in their CS’s.
¢ Then #CS+k=1
* True at start
* Wait decrements k and increments #CS; only one wait possible before a signal intervenes
«+ Signal
* Either decrements #CS and increments k
* Or leaves both unchanged
* Since k>=0, #CS <= 1. So mutex.
 If a proc is waiting, k=0. Then #CS=1, so no deadlock.
* No starvation for N=2
* But possible for N>2. P blocks, while Q and R alternate.

CS problem for n processes

* Seealg 6.3 (p 113, s 6.5)
* The same algorithm works for n procs
* The proofs for mutex and deadlock freedom work
* We never used special properties of binary sems
* But starvation is now more likely
* pand g can release each other and leave r blocked
* Exercise: If k is set to m initially, at most m processes can be in their
CS’s.

Dining Philosophers

* Obvious solution deadlocks (alg 6.10)
« Break by limiting 4 phils at table (6.11)
* Or by asymmetry (6.12)

Dining philosophers with semaphores

* Slide 6.14 t0 6.18 (p. 124 to 128)

* Requirements
« Can only eat with lhs and rhs fork
* Mutex over each fork
* Deadlock-free
* Starvation-free
« (efficient if no contention)




