
9/4/17

1

Invariants	and	semaphores
Mon	4	Sep	2017

K.	V.	S.	Prasad
Dept	of	Computer	Science

Chalmers	University
Lecture 3	of TDA384/DIT301,		August	–October 2017

Recap – state diagrams

• (Discrete)	computation =	states +	transitions
• Both sequential and	concurrent

• Can	two frogs move at	the	same	time?	(slide 2.38,	p	42)
• We use labelled or	unlabelled transitions

• According to	what we are	modelling
• Chess	games	are	recorded by	transitions alone (moves)

• States	used occasionally for	illustration	or	as	checks
• In	message passing,	the	(labelled)	transitions

• Are what we see,	from	the	outside,	of a	(sub)system
• So	they matter more than the	states

State	diagrams	– a	reasoning	tool

•Note	that states (in	diagrams	and	scenarios)	
describe variable	values before the	next
command is	executed.
• In	concurrent programs,	the	commands are
tuples,	one for	each of	the	processes
•Not	all	thinkable states are	reachable from	the	
start	state

How	to	program	multiple processes

• Concurrent vs.	sequential
• Concurrent has	more states due to interleaving

• But a	concurrent sort	program	should sort
• No	matter which interleaving
• So	cut out unwanted interleavings
• through synchronisation (waits)	

• Concurrency brings interleaving,	which has	to	be	trimmed.
• This is	the	downside;	what was the	upside,	again?
• Faithful	modelling,	or	speed	by	parallel processing.



9/4/17

2

On	system	design

•What	do	you	want	the	system	to	do?
•How	do	you	say	this?		In	what	language?
• Logic	(requirement)
• or	another	program	(equivalence).

•What	does	the	system	do?
•How	do	you	say	this?
• Operational	semantics
• (walk	through	a	state	diagram).

More	on	system	design

•Build	the	right	system	(validation)
•Does	the	formal (math) spec	capture	user	wants?
• Is	it	consistent?		Complete?
• These	can	be	checked	before	you	build	anything

•Build	the	system	right	(verification)
•Does	it	do	what	you	want	it	to?
• According	to	the	spec.

Different	kinds	of	requirement

• Safety:
• Nothing bad	ever happens on	any path
• Example:	mutex

• In	no	state are	p	and	q	in	CS	at	the	same	time
• If state diagram	is	being generated incrementally,	we see more clearly that	this	says ”in	
every path,	mutex”

• Liveness
• A	good thing happens eventually on	every path
• Example:	no	starvation

• If p	tries to	enter its CS,	it	will succeed eventually
• Often bound up	with	fairness

• We can see a	path that	starves,	but see it	is	unfair

Correctness	- safety

• A	safety	property	must	always	hold
• In	every	state	of	every	computation

• =	“nothing	bad	ever	happens”
• Typically,	partial	correctness

• Program	is	correct	if	it	terminates
• E.g.,	“loop	until	head,	toss”	

• sure	to	produce	a	head	if	it	terminates
• But	not		sure	it	will	terminate

• Will	do	so	with	increasing	probability	the	longer	we	go	on
• How	about	“loop	until	sorted,	shuffle	deck”?

• Sure	to	produce	sorted	deck	if	it	terminates
• Needs	much	longer	expected	run	to	terminate
• Can	guarantee	neither	progress	nor	termination



9/4/17

3

Correctness	- Liveness

•A	liveness property	must	eventually	hold
• Every	computation	has	a	state	where	it	holds

• =	a	good	thing	happens	eventually
• Termination
• Progress	=	get	from	one	step	to	the	next
• Non-starvation	of	individual	process

• Sort	by	shuffle	is	safe	but	cannot	guarantee	liveness -
either	progress	or	termination

Specification of the	critical section problem

•REQUIRE
• At	most one process	can be	in	its CS	at	any time (mutex)
• If	more than one process	wishes to	enter their CS,	one
must	succeed eventually (no	deadlock)
• Any process	trying to	enter its CS	will succeed eventually
(no	starvation)

•GIVEN	THAT
• A	process	in	its CS	will leave eventually (progress)
• Progress	in	non-CS optional

Pet	examples	(mostly	of	CS)

• Passing	a	door	from	opposite	directions
• If	both	sleep	until	the	other	passes	– deadlock
• If	both	eager	– livelock (busy	waiting)

• Library
• The	knife	(atomic;	deadlock	if	fork+knife picked	up	in	either	order)
• The	printer	(grab	then	print	file,	or	atomic	per	sheet?)
• Count	up	to	20
• Max,	sort	by	chemical	machine
• Max	and	grabbing	by	broadcast

Earlier	attempt	at	the	bank	problem	

• ATM	code
• loop

a1:	loop	until	flag=free;
a2:	flag	:=	busy;
a3:	temp	:=	bal;	temp--;	bal:=temp;	
a4:	flag	:=	free

• ATM	code
• loop

b1:	loop	until	flag=free;
b2:	flag	:=	busy;
b3:	temp	:=	bal;	temp--;	bal:=temp;	
b4:	flag	:=	free

flag	:=	free

Consider	the	scenario	a1,	b1,	a2,	b2,	… We get	interference.

The	solution	is	that	a1	and	a2	must	happen	in	one	step.	
Atomic	action	to	prevent	unwanted	interleaving.		Can	you	
solve	this	with	semaphores?



9/4/17

4

Invariants

• Help to	prove loops	correct
• Game	example with straight	and	wavy lines

• Example:	insertion sort
• Invariant:	the	array so	far	is	sorted

• Empty array to	start
• Every step	preserves	sort

• To	complete,	we show	termination:	when input	over.

• Try	bubble sort	on	your own
• Try	linear program	to	extract max	of a	set

A	hardware	example	– the	swap	instruction

•Ben-Ari	slide	3.23
•Try	to	show	this	is	correct
•Beautiful	example	of	an	invariant	– there	
is	only	one	green	token.
•But	there	is	a	busy	wait	for	the	green	
token.

Semaphore	ops

• Signal	(S)
• If	S.	L	=	{}	then	S.V	:=	S.V+1

else		S.L:=	S.L-{q};	 //for	some	q	in	S.L																		
q.state :=	ready

•Wait(S)
• If	S.V	>	0	then	S.V	:=	S.V-1

else	S.L:=	S.L	U	{p};																					
p.state :=	blocked

Semaphore invariants

•S.V >=	0
•S.V =	S.V.init +	#signals	- #waits
•Proof by	induction
•Initially true
•Only changes by	signals	and	waits



9/4/17

5

Mergesort using semaphores

• See p	115,	alg	6.5	(s	6.8)
• The	two halves	can be	sorted independently

• No	need to	synch
• Merge,	the	third process,

• has	to	wait for	both halves
• Note semaphores initialised to	0

• Signal	precedes wait
• Done by	process	that	did not	do a	wait

• Not	a	CS	problem,	but a	synchronisation one

Deadlock?

• With	higher level of	process
• Processes can have a	blocked state
• If all	processes are	blocked,	deadlock
• So	require:	no	path leads to	such a	state

• With	independent	machines (always running)
• Can	have livelock

• Everyone runs but no	one can enter critical section
• So	require:	no	path leads to	such a	situation

CS	by	semaphore

• Slides	6.2	through	6.7
• Why	5	states	in	slide	6.4?
• Mutex means	there	is	no	state	with	p2&q2
• Deadlock	would	be	p1	&	q1	&	S.V=0

CS	correctness via	sem invariant

• Let #CS	be	the	number of	procs in	their CS’s.
• Then #CS	+	k	=	1	is	an	invariant.		(writing k	for	S.V)
• True at	start
• Wait decrements k	and	increments #CS;	only one wait possible before a	
signal	intervenes
• Signal

• Either decrements #CS	and	increments k
• Or	leaves both unchanged

• Since k>=0,	#CS	<=	1.		So	mutex.
• If a	proc is	waiting,	k=0.		Then #CS=1,	so	no	deadlock.
• No	starvation – see next slide



9/4/17

6

CS	correctness	(contd.)

•No	starvation	(if	just	two	processes,	p	and	q)
• If	p	is	starved,	it	is	indefinitely	blocked
• So	k	=	0	and	p	is	on	the	sem queue,	and	#CS=1
• So	q	is	in	its	CS,	and	p	is	the	only	blocked	process
• By	progress	assumption,	q	must	exit	CS
• Q	will	signal,	which	immediately	unblocks	p

•Why	“immediately”?
• The	sem.	op.	is	taken	to	be	atomic	

Why two proofs?

• The	state diagram	proof
• Looks	at	each state
• Will	not	extend to	large systems

• Except with	machine aid (model checker)

• The	invariant	proof
• In	effect deals	with	sets	of	states

• E.g.,	all	states with	one proc is	CS	satisfy #CS=1
• Better for	human	proofs of	larger systems
• Foretaste of	the	logical proofs we will see (Ch.	4)	

Infinite	buffer is	correct

• Invariant
• #sem =	#buffer

• 0	initially
• Incremented by	append-signal

• Need more detail if this	is	not	atomic
• Decremented by	wait-take

• So	cons cannot take from	empty buffer
• Only cons waits – so	no	deadlock or	starvation,	since prod will always
signal

Bounded buffer

• See alg	6.8	(p	119,	s	6.12)
• Two semaphores
• Cons waits if buffer empty
• Prod waits if buffer full

• Each proc needs the	other to	release	”its”	sem
• Different	from	CS	problem

• ”Split	semaphores”
• Invariant
• notEmpty +	notFull =	initially empty places



9/4/17

7

CS	correctness via	sem invariant
for	N≥2	processes
• Let #CS	be	the	number of	procs in	their CS’s.

• Then #CS	+	k	=	1
• True at	start
• Wait decrements k	and	increments #CS;	only one wait possible before a	signal	intervenes
• Signal

• Either decrements #CS	and	increments k
• Or	leaves both unchanged

• Since k>=0,	#CS	<=	1.		So	mutex.
• If a	proc is	waiting,	k=0.		Then #CS=1,	so	no	deadlock.
• No	starvation for	N=2

• But possible for	N>2.		P	blocks,	while Q	and	R	alternate.

CS	problem	for	n	processes

• See alg	6.3	(p	113,	s	6.5)
• The	same	algorithm works for	n	procs
• The	proofs for	mutex and	deadlock freedom	work

• We never used special	properties of	binary sems
• But starvation is	now more likely

• p	and	q	can release	each other and	leave r	blocked

• Exercise:	If	k	is	set	to	m	initially,	at	most m	processes can be	in	their
CS’s.	

Dining	Philosophers

• Obvious solution	deadlocks (alg	6.10)
• Break	by	limiting 4	phils at	table	(6.11)
• Or	by	asymmetry (6.12)

Dining	philosophers	with	semaphores

• Slide	6.14	to	6.18	(p.	124	to	128)
• Requirements
• Can	only	eat	with	lhs	and	rhs fork
• Mutex over	each	fork
• Deadlock-free
• Starvation-free
• (efficient	if	no	contention)


