
9/1/17

1

Introduction to	programming
with semaphores
Fri	1	Sep	2017

K.	V.	S.	Prasad
Dept	of	Computer	Science

Chalmers	University
Lecture 2	of TDA384/DIT301,		August	–October 2017

Assignments?

• How’s	it	going	with	the	Erlang tutorial?
• Anyone	seriously	worried	about	FP?

• Did	you	look	at	the	Java	in	lab	3?		Comfortable	with	it?
• Did	you	glance	through	Ben-Ari	or	at	least	his	slides?



9/1/17

2

Recap

•Motivations
• Simulate	multi-agent	systems;		2	agents	or	10	million
• For	greater	speed	through	parallelism

•Main	abstraction	– a	process
• Could	be	a	CPU,	a	person,	an	ant,	a	bot,	…
• Cooperates,	coordinates,	competes,	communicates …
with other processes
• Using shared CPUs,	memory cells,	communication channels,	…

Time

•The	main trick	is	to	manage time
• In	a	purely parallel setup	like	music,	every process	
follows the	time axis.
• In	cinema,	time expands,	shrinks,	is	skipped,	and	
goes	back	and	forth.		
• Intercutting =	processes share the	screen (CPU)	-- may
or	may not	run off	screen.



9/1/17

3

Concurrent	systems

• Real	time systems	are a	bit	like	music – actual time matters
• Parallel programs	are like	music too
• all	play	all	the	time (counting rests	as	playing)

• Concurrent	systems	are	like	multi-screen	cinema
• But	no	skipping,	no	going	back
• Must	show	sending	of	a	signal	or	message	or	event	before	receipt
• Time	reduced	to	sequencing	– simpler,	allows	flexible	scheduling
• But	don’t	sneak	actual	time	in	the	back	door

• Remember	the	train	crash	“never	mind	token,	you	have	time	to	escape”

Execution	model	and	scenarios

• Of	all	the	processes	in	the	program
• pick	any	runnable	one,	and	execute	one	step
• Or,	pick	any	subset	of	runnable	processes	and	do	one	step	of	each

• Since	the	picking	is	arbitrary,	we	get	non-determinism
• So	usual	debugging	(breakpoints,	stepping,	starting	over,	etc.)	fails
• Need	to	check	every	possible	run
• Done	by	model	checkers	such	as	SPIN
• Or	by	examining	the	program	text



9/1/17

4

Sleep instead	of	busy	wait

•Don’t	check	every	cycle	for	condition	(event,	message)
• Instead,	say	“I’ll	sleep.		Wake	me	up	on	condition.”
• Run	time	support	or	Operating	system	will	wake	you	up.
• It	will	also	schedule a	runnable (non-sleeping)	process	
onto	an	available	CPU.
• If	no	CPU	available,	a	process	is	runnable	but	not	running

•Hence	Ben-Ari	chap	6	model	of	process	states

People	trying	to	borrow	the	lone	library	book
- failing	program

a1:	loop	until	book=free;
a2:	book:=	borrowed

b1:	loop	until	book=free;
b2:	book:=	borrowed

book :=	free

students a	and	b	might	execute	a1	and	b1	in	parallel,
and	then	a2	and	b2	in	parallel,	resulting	in	double	booking.
And	yet	both	politely	checked	availability	first.

a1	and	b1	use	a	test	instruction	(=,	yielding	true/false),	while
a2	and	b2	are	set	instructions.		It	is	the	separation	between	test	and	set	
that	allows	interference.



9/1/17

5

Hardware	solution	–
an	atomic test-and-set	instruction
• tset(mine,library)	=	atomic{mine:=library;	library:=0}
• Mine and	library say	how	many	books	(0	or	1)	we	each	have
• To	begin	with,	library=1,	and	both	students	have	respective	mine=0

a:	loop	tset(mine,library)	until	mine=1; b :	loop	tset(mine,library)	until	mine=1;

library	:=	1

Students	a	and	b	can	execute	their	loops	a	and	b	in	parallel,
and	only	one	will	emerge	with	the	book.
But	these	loops	are	busy	waits.

Semaphore =	software	test-and-set,
plus	wake-up	services	
•Suppose	you	had	a	wait(book)	instruction,	which
• if	book=free,	gives	you	the	book
• if	book=borrowed,	puts	you	to	sleep	and	wakes	you	
when	it	is	free

•This	achieves	the	same	as	the	loops	in	the	
previous	slide
• You	emerge	with	a	book
•or	go	to	sleep	(instead	of	being	stuck	in	a	busy	loop)



9/1/17

6

Returning	the	book?

•In	the	hardware	solution,	simply	set	
library:=1
•If	you	only	use	mine	via	the	tset,	you	
don’t	need	to	set	mine:=0

•In	the	software	solution,	we	need	to	be	
a	little	more	sophisticated



9/1/17

7

Alg 6.1	of	Ben-Ari

•Each	student	does
loop

other	stuff //non-critical	section	(NCS)
sleep	till	you	borrow	book // pre-protocol	
read	book //critical	section	(CS)
return	book //post-protocol



9/1/17

8

CS	assumptions	and	requirements

•Assumptions
• NCS	may	loop	- Students	may	drop	out	of	course	here
• But	CS	must	terminate	– must	return	borrowed	book

•Requirements	
• book	is	issued	to	at	most	one	student	at	a	time	(mutex)
• Attempt	to	borrow	will	succeed	(liveness,	no	starvation)
•Multiple	students	trying	to	borrow	->	one	will	succeed
• i.e.,	no	deadlock (=	all	sleeping,	so	no	one	wakes-up	another)

Proof	by	state	diagram,	figure	6.1

•Extends	easily	to	multiple	students
•need	fair	semaphores	
• ensure	no	one	is	ignored	all	the	time

•Extends	easily	to	multiple	copies	of	book
•need	general	semaphore



9/1/17

9

Producer - consumer

•Buffers can only even out transient delays
• Average speed	must	be	same	for	both

• Infinite	buffer first.		Means
• Producer never waits
• Only one semaphore needed
• Need partial state diagram
• Signal	in	a	loop

• See algs	6.6	and	6.7		

Infinite	buffer is	correct

• Invariant
• #sem =	#buffer

• 0	initially
• Incremented by	append-signal

• Need more detail if this	is	not	atomic
• Decremented by	wait-take

• So	cons cannot take from	empty buffer
• Only cons waits – so	no	deadlock	or	starvation,	since prod will always
signal



9/1/17

10

Bounded buffer

• See alg	6.8	(p	119,	s	6.12)
• Two semaphores

• Cons waits if buffer empty
• Prod waits if buffer full

• Each proc needs the	other to	release	”its”	sem
• Different	from	CS	problem

• ”Split	semaphores”
• Invariant

• notEmpty +	notFull =	initially empty places

Old	Psuedo-code	for	single	place	buffer

• producer
• loop

d1:	loop	until	flag=empty;
R	:=	new	record;

d2:	flag	:=	full

• consumer
• loop

p1:	loop	until	flag=full;
temp:=	R;

p2:	flag	:=	empty

flag	:=	empty



9/1/17

11

Why	does	this	single	flag	code	work?	

• Just	one	semaphore?
• The	two	conditions	are	mutually	exclusive	and	complementary
• Flag	can	only	be	empty	or	full,	and	not	both	at	once

• Each	process	flips	the	flag	to	the	value	the	other	is	waiting	for
• The	flag	is	like	an	ad-hoc	semaphore	with	both	wait	and	–wait
• -wait	=	wait	for	0	instead	of	wait	for	1

• Such	ad-hoc	solutions	might	exist	in	many	cases.
• The	two	semaphore	solution	for	the	bounded	buffer	uses	standard	
primitives,	an	advantage	in	itself
• Ad	hoc	solutions	require	more	care


