
8/29/17

1

Principles of
Concurrent Programming

TDA384/DIT391
K.	V.	S.	Prasad

Dept	of	Computer	Science
Chalmers	University

August	–October 2017

Teaching Team

• K.	V.	S.	Prasad (main lecturer,	course-in-charge)
• Carlo	Furia (guest lectures on	multi-core programming)
• Course	Assistants
• Raul	Pardo Jimenez	(also,		guest lectures on	Promela and	Java)
• John	Camilleri (also,	guest lectures on	Erlang)
• Alexander	Sjösten
• Asefa Abel



8/29/17

2

Website

• http://www.cse.chalmers.se/edu/course/TDA384_LP1/
• Should be	reachable from	student	portals
• Search on	”concurrent”
• Go	to	their course plan
• From	there to	our home page

• Or	just	search for	TDA384	or	DIT391,	possibly with ”concurrent”added

Communication	channels

• Best	of all,	face-to-face:	in	lectures or	supervised lab sessions
• At	other times:
• From	you	to	us:

• Use Ping-Pong discussion forum	(go	to	TDA384/DIT391)
• Or	via	your	course rep	(next slide)

• From	us to	you
• Via	Ping-Pong if one person	or	small	group)
• News	section of	Course	web page	otherwise



8/29/17

3

Course	representatives

• Randomly chosen	by	admin (email	addresses on	website)
• Will	announce names and	email	addresses when admin tells us

• Usually we get	a	few from	CTH	and	a	few from	GU
• Preliminary plan:	to	meet after Monday lecture,	weeks 2,	4,	6

Practicalities

• An	average of	two lectures per	week:		for	schedule,	see
• http://www.cse.chalmers.se/edu/course/TDA384_LP1/lectures/

• Rough guidelines (marks	out of 100):
• Pass	=	>40	points,	Grade 4	=	>60p,	Grade 5	=	>80p
• To	pass,	must	pass	all	labs and	exam separately

• Written Exam 70	points	(4	hours,	two open books)
• Three	programming labs – 30	points

• To	be	done in	pairs
• See http://www.cse.chalmers.se/edu/year/2017/course/TDA384_LP1/labs/ for	
submission	deadlines	and	marks

• Supervision	available at	announced times



8/29/17

4

Textbooks

• M.	Ben-Ari,	”Principles of	Concurrent and	Distributed
Programming”,	2nd	ed.,	Addison-Wesley	2006	
• Central	to	your study.		Chaps 1	through 9	of book.

• M.	Herlihy &	N.	Shavit: The	Art	of Multiprocessor	Programming,	
Morgan	Kaufmann (available online	through Chalmers	library)
• Parallelizing computations:	Herlihy &	Shavit 16.1,	16.4
• Parallel linked lists:	Herlihy &	Shavit 9
• Lock	free programming:	Herlihy &	Shavit 10.1,	10.2,	10.5,	10.6,	18.1,	18.2

Other resources

• Old	slides (both mine and	Carlo	Furio’s)
• Ben-Ari’s slides with	reference to	the	text
• Language	resources – Java,	Erlang,	Promela
• E.g.,	Joe	Armstrong,	Programming in	Erlang

• Recommended reading
• http://www.cse.chalmers.se/edu/course/TDA384_LP1/reading/
• http://www.cse.chalmers.se/edu/year/2016/course/TDA383_LP1/lit_inf.html



8/29/17

5

Programming	Languages

• For	labs
• Java	(labs	1	and	3),	Erlang (lab	2)

• Erlang untyped functional	language	with	asynchronous	channels
• Tutorials	on	Erlang week	3

• GET	STARTED	NOW	WITH	ERLANG	TUTORIALS

• For	lectures	
• Ben-Ari’s	pseudo	code
• Java/Erlang,	or	pseudo-code	based	on	them
• Spin/Promela as	teaching	aid	(ignore	if	you	wish)

• All	but	Erlang supported	by	Ben-Ari’s	textbook
• Exam	will	not	use	Promela/SPIN

Formal	Entry	Requirements

• GU
• 7.5	hec in	imperative/object-oriented	programming	such	as	DIT012,	DIT948	or	
equivalent,	
• an	additional	course	in	programming	or	data	structures.	
• Moreover,	the	student	must	also	have	knowledge	in	propositional	logic,	which	
is	acquired	by	successfully	completing	courses	such	as	DIT980,	DIT725,	the	
part	on	introductory	algebra	from	MMGD200,	or	equivalent.

• CTH
• Solid	background	in	programming,	including	object	oriented	languages	(for	
example	Java),	and	basic	knowledge	of	(propositional)	logic.	Some	knowledge	
of	functional	programming	(for	example	Haskell)	is	a	plus.	



8/29/17

6

Informal	Prerequisite	warning

For	some	students	the	formal	prerequisites	suffice,	but	many	need	more:	
1.	Comfort	with	sizable	Java	code	(for	the	labs).		See	lab	3.
2.	Some	students	find	Functional	programming	(“FP”)	hard	to	pick	up.	

Are	you	one	of	these?		Find	out	by	doing	the	Erlang tutorial.			If	you	find	that	
hard,	consider	taking	this	course	after	doing	some	FP.

3.	The	course	is	about	Concurrent	Programming	in	general,	not	just	as	
it	appears	in	Java	and	Erlang.		Hence	the	pseudo-code.		You	must	be	
comfortable	adapting	to	new	notation.

4.	Concurrent	programs	cannot	be	debugged	in	the	usual	way,	so	we	
need	to	reason	about	them.		Glance	quickly	through	Ben-Ari	and	make	sure	
you	are	happy	with	the	content.	

Multi-agent	systems	around	us

• Biological	(sub)systems
• the	circulatory	system,	say	(at	a	suitable	level	of	abstraction)

• Ecological	systems
• Parts	of	an	economy
• Various	views	of	an	industrial	plant
• …

• We often wish to	simulate such systems	to	understand	how they work,	and	
to	diagnose systems	gone wrong.			So:
• How should we represent an	agent?



8/29/17

7

Processes (or	agents,	or	threads)

• Abstraction from	an	active,	autonomous	entity
• People	(cooperating,	coordinating	or	competing on	a	job)
• Machines	(ditto)

• E.g.,	I/O	devices	and	CPU

• Each	person	or	machine	works	at	their	own	speed
• Some	slow,	some	fast,	some	even	changing	speeds	as	they	go
• Some	might	be	taking	breaks	(ready=runnable,	but	not	actually running),
• or	waiting=blocked=sleeping (for	input,	say,	or	for	a	message)

• The	first	abstraction	is	from	actual	speed
• So	not	real	time
• Explicit	synchronisation,	not	clock	based
• Follow	your	own	rules	– example	of	train	crash

What	should	processes	see	of	each	other?

• People	working	together	can	
• Speak	(or	phone	or	email),	or	leave	messages	on	a	bulleting	board
• They	can	also	look	over	and	see	whether	the	others	are	waiting,	or	taking	a	
break,	or	actually	working,	and	how	fast

• But	this	is	too	rich	for	a	programming	abstraction
• We	limit	processes	to	only	communicate	in	limited	ways,	typically	either

• Shared	memory	(like	bulletin	boards,	or	memory	cells)
• Messages	(like	email	or	phone	or	radio	broadcast)

• We	begin	with	shared	memory,	for	a	few	weeks
• Also,	from	the	outside

• We	say	we	don’t	know	if	a	process	is	blocked	or	running,	and	if	the	latter,	how	fast
• So	we	don’t	care	about	actual	real	time,	but	only	sequences	of	actions



8/29/17

8

But	just	shared	memory	is	problematic

• Consider	CDR	->	R	->	CPU	->	P	->	LPT,	where
• CDR	=	card	reader,	LPT	=	line	printer,	and	R	and	P	are	shared	memory	cells
• The	arrows	->	show	the	way	the	data	flows
• Believe	it	or	not,	this	is	a	reasonable	representation	of	a	1950’s	URE	system

• URE	=	Unit	Record	Equipment

• Suppose	CDR	is	supposed	to	input	records	1,	2,	3,	…
• which the	CPU	passes on	to	LPT	in	the	form	1*1,	2*2,	3*3,	… (squares)
• But if the	CPU	is	too fast	or	the	CDR	is	too slow or	stuck,	then the	CPU	might
pick	up 1,	2,	2,	3,	...	And	so	on.		(Repeating records).
• If	the	CPU	is	too slow,	it	might pick	up 1,	3,	… (Skipping records)

So	need	(synchronisation)	signals	or events

• So	that	the	CDR	can	tell	the	CPU	“read	the	next	record	now”,	and	so	
that	the	CPU	can	tell	the	CDR	“write	the	next	record	now”.
• We	can	imagine	adding	a	flag	with	values	“full”	and	“empty”.
• CDR	waits	till	flag=empty,	then	writes	the	new	record	into	R,	and	sets	the	
flag:=full.
• CPU	waits till	flag=full,	then	reads	R,	and	sets	the	flag:=empty.

• What	does	wait mean?
• Check	the	flag	every	cycle	till	the	flag	has	the	value	you	want.
• This	is	called	a	busy	wait.	This	is	not	wasting	cycles,	since	the	machine	has	
nothing	else	to	do.

• How	do	you	show	the	solution	works?	



8/29/17

9

Psuedo-code	for	our	flag	attempt

• CDR	code
• loop

d1:	loop	until	flag=empty;
R	:=	new	record;

d2:	flag	:=	full

• CPU	code	(partial)
• loop

p1:	loop	until	flag=full;
temp:=	R;

p2:	flag	:=	empty

flag	:=	empty

d1,	d2,	p1,	p2	are	command	labels

Simply	“loop”	means	“loop	forever”

Can	we	avoid	busy	waits?

• Yes,	we	can	sleep	until	the	flag=full
• (or	whatever	condition	we	are	waiting	for)
• Provided	we	are	woken	up	when	the	condition	holds

• Who	will	wake	us	up?
• The	operating	system	(“OS”)	or	the	language	run-time	support	(“RTS”)
• Thus	we	have	Ben-Ari’s	slide	6.1

• This	has	been	standard	software	view	for	fifty	years
• What	does	the	CPU	do	when	a	process	is	sleeping?

• Busy-waiting	for	the	condition	defeats	the	software	sleep
• It	can	run	another	process
• There	can	be	any	number	of	CPU’s	and	any	number	of	processes!	Scheduling!



8/29/17

10

An	example	of	interference	in	shared	memory

• Suppose	spouses	share	a	bank	account	and	ATMs	dispense	one	unit	
of	cash	using	the	following	procedure
• proctype W(loc)																																																																																																			
{int temp;	
temp	:=	bal;	
temp--;	
out(1);	
bal:=temp}
• bal is	shared	global	balance	between	spouses
• temp	is	local	register	in	ATM
• out	is	payout	– users	always	withdraw	1	unit	of	money

Shared	bank	account	– simultaneous	
withdrawals	from	different	locations
• Then	{run	W(A);	run	W(B)}																																																																				
could	result	in	locations	A and	B	both	succeeding	in	withdrawals,	but	
with	the	account	being	debited	just	once,	as	in	the	following	scenario
• W(A):	temp	:=	bal;	W(B):	temp	:=	bal;																																																
W(A):	temp-- ;								W(B):	temp-- ;																																																														
W(A):	out(1);										W(B):	out(1);																																																																														
W(A):	bal:=temp;			W(B): bal:=temp	
• Commands	on	the	same	line	are	executed	in	parallel	(or,	in	either	
order),	but	before	commands	on	lines	below.



8/29/17

11

Mutual	exclusion	(“mutex”)

• Each	ATM	needs	mutually	exclusive	access	to	bal.
• If	we	try	a	flag	solution	(busy/free),	then	each	ATM	could	find	the	flag	
free,	and	go	ahead.

Psuedo-code	for	flag	attempt	for	the	bank

• ATM	code
• loop

a1:	loop	until	flag=free;
a2:	flag	:=	busy;
a3:	temp	:=	bal;	temp--;	bal:=temp;	
a4:	flag	:=	free

• ATM	code
• loop

b1:	loop	until	flag=free;
b2:	flag	:=	busy;
b3:	temp	:=	bal;	temp--;	bal:=temp;	
b4:	flag	:=	free

flag	:=	free

Consider	the	scenarion a1,	b1,	a2,	b2,	… We get	the	same	
interference problem.

The	solution	is	that	a1	and	a2	must	happen	in	one	step.	
Atomic	action	to	prevent	unwanted	interleaving



8/29/17

12

Interleaving

• Each process	executes a	sequence of	atomic
commands (usually called ”statements”,	though I	
don’t like	that	term).
• Each process	has	its own control pointer,	see Alg	2.1	
of	Ben-Ari
• For	Alg	2.2,	see what interleavings are impossible
• See slides 2.3	– 2.7	of Ben-Ari

Scenarios

•A	scenario	is	a	sequence of	states
•A	path through the	state diagram
• See Ben-Ari	slide 2.7	for	an	example
• Each row is	a	state
• The	statement to	be	executed is	in	bold



8/29/17

13

The	counting example

• See algorithm 2.9	on	slide 2.24
•What are	the	min	and	max	possible values of	n?

•How to	say it	in	C-BACI,	Ada	and	Java
•2.27	to	2.32

Atomic	statements

• The	thing that	happens without interruption
• Can	be	implemented as	high	priority

• Compare algorithms 2.3	and	2.4
• Slides 2.12	to	2.17

• 2.3	can guarantee n=2	at	the	end
• 2.4	cannot

• hardware	folk	say there is	a	”race	condition”

• We must	say what the	atomic statements are
• In	the	book,	assignments and	boolean conditions
• How to	implement these as	atomic?



8/29/17

14

FP	begins	with	evaluation

• The	first	computations	we	all	learn:	5+3=8
• Neither	5	nor	3	“became”	8.		Nothing	changed!
• The	=	is	often	better	replaced	by	->.

• The	=	is	true	enough.		It	says	that	->,	evaluation,	does	not	change	the	value.
• Then	why	do	a	->	at	all?

• We	go	towards	whatever	is	regarded	as	simpler.
• The	simplest	is	the	canonical	value,	often	a	name,	such	as	8.

Factorial
fac 0	=	1
fac n	=	n	*	fac (n-1)		-- use if parm	<>	0

In	the	context of	this	program	of	two definitions,
an	expression	is	evaluated as	follows:	for	a	non-canonical term,	find a	matching pattern,		and	
replace lhs by	rhs

fac 3	=	3	*	fac 2
=	3	*	(2	*	fac 1)
=	3	*	(2	*	(1	*	fac 0))
=	3	*	(2	*	(1	*	1))
=	3	*	(2	*	1)
=	3	*	2
=	6



8/29/17

15

More	on	FP

• So	the	hunt	for	matching	patterns	is	the	new	control	flow
• The	replace	is	the	new	basic	command,	as	assignment	is	for	imperative	
programming	(IP)
• We	can	use	if-then-else	or	case	expressions	to	branch
• We	don’t	need	loops,	because	the	recursion	does	that	job
• FP	and	IP	can	each	do	what	the	other	does
• Erlang is	IP	as	far	as	the	I/O	goes	(state	changes),	and	the	FP	part	of	it	is	
incidental	to	this	course	– but	needed	when	you	program	in	Erlang!
• The	O-O	part	of	Java	is	incidental	to	CP	(concurrent	programming),	if	not	
inimical	to	it	– but	you	need	to	at	least	follow	the	syntax	when	you	
program	in	Java!


