
Lock-free programming

Lecture 11 of TDA384/DIT391
(Principles of Concurrent Programming)

Carlo A. Furia

Chalmers University of Technology – University of Gothenburg
SP3 2017/2018



Today’s menu

Software transactional memory

1 / 15



Synchronization costs

A number of factors challenge designing correct and efficient
parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this class, we present:

• software transactional memory, which supports composability in
lock-free programming

2 / 15



Synchronization costs

A number of factors challenge designing correct and efficient
parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this class, we present:

• software transactional memory, which supports composability in
lock-free programming

2 / 15



Software transactional memory



Transactions

The notion of transaction, which comes from database research,
supports a general approach to lock-free programming:

A transaction is a sequence of steps executed by a single thread,
which are executed atomically.

A transaction may:

• succeed: all changes made by the transaction are committed to
shared memory; they appear as if they happened
instantaneously

• fail: the partial changes are rolled back, and the shared memory
is in the same state it would be if the transaction had never
executed

Therefore, a transaction either executes completely and successfully,
or it does not have any effect at all.

3 / 15



Programming with transactions

The notion of transaction supports a general approach to lock-free
programming:

• define a transaction for every access to shared memory

• if the transaction succeeds, there was no interference

• if the transaction failed, retry until it succeeds

Imagine we have a syntactic means of defining transaction code:

atomic {

// transaction code

}

// retry until success

% execute Function(Arguments)

% as a transaction (retry until success)

atomic(Function, Arguments)

Transactions may also support invoking retry and rollback explicitly.

(Note that atomic is not a valid keyword in Java or Erlang: we use it
for illustration purposes, and later we sketch how it could be
implemented as a function in Erlang.)

4 / 15



Transactions are better than locks

Transactional atomic blocks look superficially similar to monitor’s
methods with implicit locking, but they are in fact much more flexible:

• since transactions do not lock, there is no locking overhead
• parallelism is achieved without risks of race conditions
• since no locks are acquired, there is no problem of deadlocks

(although starvation may still occur if there is a lot of contention)
• transactions compose easily

class Account {

void deposit(int amount)

{ atomic {

balance += amount; }}

void withdraw(int amount)

{ atomic {

balance -= amount; }}

}

class TransferAccount extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount,

Account other)

{ atomic {

this.withdraw(amount);

other.deposit(amount); }}

}

no locking, so no deadlock is possible! 5 / 15



Transactional memory

A transactional memory is a shared memory storage that supports
atomic updates of multiple memory locations.

Implementations of transactional memory can be based on hardware
or software:

• hardware transactional memory relies on support at the level of
instruction sets (Herlihy & Moss, 1993)

• software transactional memory is implemented as a library or
language extension (Shavit & Touitou, 1995)

Software transactional memory implementations are available for
several mainstream languages (including Java, Haskell, and Erlang).
This is still an active research topic – quality varies!

6 / 15



Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

7 / 15



Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

Clients use an STM as follows:

• at the beginning of a transaction, check out a copy of all
variables involved in the transaction

• execute the transaction, which modifies the values of the local
copies of the variables

• at the end of a transaction, try to commit all local copies of the
variables

7 / 15



Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

The STM’s commit operation ensures atomicity:

• if all committed variables have the same version number as the
corresponding variables in the STM, there were no changes to
the memory during the transaction: the transaction succeeds

• if some committed variable has a different version number from
the corresponding variable in the STM, there was some change
to the memory during the transaction: the transaction fails

7 / 15



The counter example – with software transactional memory

int cnt;

thread t thread u

int c; int c;

atomic {

c = cnt;

cnt = c + 1;

}

atomic {

c = cnt;

cnt = c + 1;

}

The atomic translates into a loop that repeats until the transaction
succeeds:

1. check out (pull) the current value of cnt

2. increment the local variable c

3. try to commit (push) the new value of cnt

4. if cnt has changed version when trying to commit, repeat the loop
8 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

• •

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : ⊥ cu : ⊥ cnt : 03

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•
•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 03 cu : ⊥ cnt : 03

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 13 cu : ⊥ cnt : 03

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

success cu : ⊥ cnt : 14

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done cu : 14 cnt : 14

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done cu : 24 cnt : 14

9 / 15



The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done success cnt : 25

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

• •

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : ⊥ cu : ⊥ cnt : 03

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•
•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 03 cu : ⊥ cnt : 03

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

• •

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 03 cu : 03 cnt : 03

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•
•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 13 cu : 03 cnt : 03

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

• •

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : 13 cu : 13 cnt : 03

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

success cu : 13 cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done fail cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done retry cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done cu : ⊥ cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done cu : 14 cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

•

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done cu : 24 cnt : 14

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done success cnt : 25

9 / 15



The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

done done cnt : 25

9 / 15



STM in Erlang

An STM is a server that provides the following main operations:

• pull(Name): check out a copy of variable with name Name

• push(Name, Vars): commit all variables in Vars; return fail if
unsuccessful

Clients read and write local copies of variables using:

• read(Var): get value of variable Var

• write(Var, Value): set value of variable Var to Value

We base the STM implementation on the gserver generic server
implementation we presented in a previous class.

10 / 15



STM: operations

create(Tm, Name, Value) ->

gserver:request(Tm, {create, Name, Value}).

drop(Tm, Name) ->

gserver:request(Tm, {drop, Name}).

pull(Tm, Name) ->

gserver:request(Tm, {pull, Name}).

push(Tm, Vars) when is_list(Vars) ->

gserver:request(Tm, {push, Vars});

read(#var{value = Value}) ->

Value.

write(Var = #var{}, Value) ->

Var#var{value = Value}.

11 / 15



STM: server handlers

The storage is a dictionary associating variable names to variables; it
is the essential part of the server state.

stm(Storage, {pull, Name}) ->

case dict:is_key(Name, Storage) of

true ->

{reply, Storage,

dict:fetch(Name, Storage)};

false ->

{reply, Storage, not_found}

end;

stm(Storage, {push, Vars}) ->

case try_push(Vars, Storage) of

{success, NewStorage} ->

{reply, NewStorage, success};

fail ->

{reply, Storage, fail}

end.

12 / 15



STM: try to push

Helper function try_push determines if any variable to be committed
has a different version from the corresponding one in the STM.

try_push([], Storage) ->

{success, Storage};

try_push([Var = #var{name = Name, version = Version} | Vars],

Storage) ->

case dict:find(Name, Storage) of

{ok, #var{version = Version}} ->

try_push(Vars,

dict:store(Name,

Var#var{version = Version + 1},

Storage));

_ -> fail

end.

13 / 15



Using the Erlang STM

Using the STM to create atomic functions is quite straightforward. For
example, here are pop and push atomic operations for a list:

% pop head element from ‘Name’

qpop(Tm, Name) ->

Queue = pull(Tm, Name),

[H|T] = read(Queue),

NewQueue = write(Queue, T),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpop(Tm, Name);

% push successful: return head

_ -> H

end.

% push ‘Value’ to back of ‘Name’

qpush(Tm, Name, Value) ->

Queue = pull(Tm, Name),

Vals = read(Queue),

NewQueue = write(Queue,

Vals ++ [Value]),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpush(Tm, Name, Value);

% push successful: return ok

_ -> ok

end.

14 / 15



Composable transactions?

The simple implementation of STM we have outlined does not
support easily composing transactions:

% pop from Queue1 and push to Queue2

qtransfer(Tm, Queue1, Queue2) ->

Value = qpop(Tm, Queue1), % another process may interleave!

qpush(Tm, Queue2, Value).

To implement composability, we need to keep track of pending
transactions and defer commits until all nested transactions have
completed.

See the course’s website for an example implementation:

% atomically execute Function on arguments Args

atomic(Tm, Function, Args) -> todo.

15 / 15



These slides’ license

© 2016–2018 Carlo A. Furia

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Software transactional memory

