
Texturing

Slides done by Tomas Akenine-Möller
and Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

1

Texturing: Glue n-dimensional
images onto geometrical objects

l Purpose: more realism, and this is a cheap
way to do it
– Bump mapping
– Plus, we can do environment mapping
– And other things

+ =

2

Texture coordinates

l What if (u,v) >1.0 or <0.0 ?
l To repeat textures, use just the fractional part

– Example: 5.3 -> 0.3
l Repeat, mirror, clamp, border:

(0,0) (1,0)

(1,1)(0,1)

(u,v) in [0,1] (u0,v0)

(u1,v1)

(u2,v2)

(-1,-1)

(2,2)

3

Texture magnification
l What does the

theory say…

l sinc(x) is not feasible in real time
l Box filter (nearest-neighbor) is
l Poor quality

4

Texture magnification
l Tent filter is

feasible!
l Linear

interpolation

l Looks better
l Simple in 1D:
l (1-t)*color0+t*color1
l How about 2D?

5

Bilinear interpolation
l Texture coordinates (pu,pv) in [0,1]
l Texture images size: n*m texels
l Nearest neighbor would access:

(floor(n*u+0.5), floor(m*v+0.5))
l Interpolate 1D in x & y respectively

6

Bilinear interpolation
l Check out this formula at home
l t(u,v) accesses the texture map
l b(u,v) filtered texel
l (u’,v’) = fractional part of texel coordinate

w
ei

gh
ts

7

Texture minification
What does a pixel ”see”?

l Theory (sinc) is too expensive
l Cheaper: average of texel inside a pixel
l Still too expensive, actually

l Mipmaps – another level of approximation
– Prefilter texture maps as shown on next slide

8

Mipmapping
l Image pyramid
l Half width and

height when going
upwards

l Average over 4 ”child texels” to form
”parent texel”

l Depending on amount of minification,
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u
v

d

9

Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

l How to compute d?

v
u

d

Level n+1

Level n

(u0,v0,d0)

10

Computing d for mipmapping

l Approximate quad with square
l Gives overblur!

l Even better: anisotropic texture filtering
– Approximate quad with several smaller mipmap samples

pixel projected
to texture space

texel

bd
Ab

A

2log

ralquadrilate of area iveapproximat

=
=

=

11

Anisotropic texture filtering

16 samples

12

Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much13

Miscellaneous
l How to apply texturing:

– Add, sub, etc as you like, using fragment
shaders.

Common alternatives:
– Modulate (multiply texture with lighting)
– ”Replace” (just use texture color)
Often:
diffuseTexture, (specularTexture, ambientTexture)
– Instead of ambMtrl, diffMtrl, specMtrl

14

Modulate

15

Texture
multiplied with
result from
lighting (amb,
diff, spec)

Using textures in OpenGL
Do once when loading texture:

glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
int w, h, comp; // width, height, #components (rgb=3, rgba=4), #comp
unsigned char* image = stbi_load("floor.jpg", &w, &h, &comp, STBI_rgb_alpha);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, image);
free(image);
glGenerateMipmap(GL_TEXTURE_2D);

//Indicates that the active texture should be repeated over the surface
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
// Sets the type of mipmap interpolation to be used on magnifying and minifying the texture. These are the
// nicest available options.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16);

Do every time you want to use this texture when drawing:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
// Now, draw your triangles with texture coordinates specified

16

FRAGMENT SHADER

in vec2 texCoord;
void main()
{

gl_FragColor = texture2D(0,
texCoord.xy);

}

Light Maps
• Often used in games
• Mutliply both textures with

each other in the fragment
shader, or (old way):
– render wall using brick

texture
– render wall using light

texture and blending to the
frame buffer

+

=

17

18

Department of Computer Engineering

Environment mapping

Tomas Akenine-Mőller © 2002

Environment mapping

l Assumes the environment is infinitely far away
l Sphere mapping
l Cube mapping is the norm nowadays

– Advantages: no singularities as in sphere map
– Much less distortion
– Gives better result
– Not dependent on a view position

Modified by Ulf Assarsson 2004

Department of Computer Engineering

Sphere map
• example

Sphere map
(texture)

Sphere map
applied on torus

Sphere Map

• Assume surface normals are available
• Then OpenGL can compute reflection vector at

each pixel
• The texture coordinates s,t are given by:

– (see OH 169 for details)

()

÷÷
ø

ö
çç
è

æ
+=

÷
ø
ö

ç
è
æ +=

+++=

15.0

15.0

1 222

L
R

t

L
Rs

RRRL

y

x

zyx

22

Sphere Map

23
In front of the sphere.
Behind the sphere.

Sphere Map
• Infinitesimally small

reflective sphere (infinitely
far away)
– i.e., orthographic view of a

reflective unit sphere

• Create by:
– Photographing metal sphere
– Or,

• Ray tracing
• Transforming cube map to

sphere map

24

x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Remap from [-1,1] to [0,1], i.e., ((u,v)+(1,1))/2
l Your hardware does all the work. You just have to compute the

reflection vector. (See lab 4)

neye

25

Department of Computer Engineering

Example

Department of Computer Engineering

Bump mapping

• by Blinn in 1978
• Inexpensive way of simulating wrinkles and bumps

on geometry
– Too expensive to model these geometrically

• Instead let a texture modify the normal at each pixel,
and then use this normal to compute lighting

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Department of Computer Engineering

Bump mapping
Storing bump maps:
1. as a gray scale image
2. As Δx, Δy distorsions
3. As normals (nx , ny , nz)
• How store normals in texture (bump map):

– n=(nx , ny , nz) are in [-1,1]
– Add 1, mult 0.5: in [0,1]
– Mult by 255 (8 bit per color

component)
– Values can now be stored in 8-bit rgb texture

Bump mapping: example

29

Bump mapping vs Normal mapping

Bump mapping – tangent space:
lNormals are stored as distorsion of face orientation. The same bump map
can be tiled/repeated and reused for many faces with different orientation30

Normal mapping – model
space:
•Normals are stored directly in
model space. I.e., as
including both face orientation
plus distorsion.

More...
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear (linear interpolation 4 times)
– Enables new possibilities

l Can store light in a room, for example

l Displacement Mapping
– Offsets the position per pixel or per vertex

l Offsetting per vertex is easy in vertex shader
l Offsetting per pixel is architecturally hard

– Cannot be done in fragment shader
– Can be done using Geometry Shader (e.g. Direct3D 10) by

ray casting in the displacement map

31

2D texture vs 3D texture

32

From http://www.ati.com/developer/shaderx/ShaderX_3DTextures.pdf33

Precomputed Light fields

Max Payne 2 by Remedy Entertainment

Samuli Laine and Janne Kontkanen34

Displacement Mapping
l Uses a map to

displace the
surface at each
position

l Can be done with
a Geometry
Shader

Geometry ShaderVertex Shader Pixel Shader
35

Geometry Shader Example
Generalized Displacement Maps

l Step 0: Process Vertices (VS)
l Step 1: Extrude Prisms (GS)

Step 2: Raytrace! (PS)

36

Rendering to Texture
//**
// Create a Frame Buffer Object (FBO) that we first render to and then use as a texture
//**
glGenFramebuffers(1, &frameBuffer); // generate framebuffer id
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); // following commands will affect ”frameBuffer”

// Create a texture for the frame buffer, with specified filtering, rgba-format and size
glGenTextures(1, &texFrameBuffer);
glBindTexture(GL_TEXTURE_2D, texFrameBuffer); // following commands will affect ”texFrameBuffer”
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4, 512, 512, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

// Create a depth buffer for our FBO
glGenRenderbuffers(1, &depthBuffer); // get the ID to a new Renderbuffer
glBindRenderbuffer(GL_RENDERBUFFER, depthBuffer);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, 512, 512);

// Set rendering of the default color0-buffer to go into the texture
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,

texFrameBuffer, 0);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER,
depthBuffer); // Associate our created depth buffer with the FBO

Or simply render to back-buffer and copy into texture
using command: glCopyTexSubImage (). But is slower. 37

(See also
Lab 5)

Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,
0,127,0,0, 0,127,0,127, 0,127,0,127,
0,127,0,0,
0,0,127,0, 0,0,127,127, 0,0,127,127,
0,0,127,0,
127,127,0,0, 127,127,0,127,
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
SDL_GL_SwapWindow //”Swap buffers”

}
38

Sprites (=älvor) was a technique on older home
computers, e.g. VIC64. As opposed to billboards
sprites does not use the frame buffer. They are
rasterized directly to the screen using a special chip. (A
special bit-register also marked colliding sprites.)

Sprites

Animation Maps

The sprites for Ryu
in Street Fighter:

39

Billboards
• 2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens-
flares

40

• Rotate them towards viewer
– Either by rotation matrix (see OH 288), or
– by orthographic projection

Billboards

41

• Fix correct transparency
by blending AND using
alpha-test
– In fragment shader:

if (color.a < 0.1) discard;

• Or: sort back-to-front and
blend
– (Depth writing could then

be disabled to gain speed)
• glDepthMask(0);

Billboards
Color Buffer Depth Buffer

With
blending

With
alpha test

42

Perspective distorsion
• Spheres often appear as ellipsoids when

located in the periphery. Why?

Exaggerated examplecamera
If our eye was placed at the camera position, we would not see
the distorsion. We are often positioned way behind the camera.43

Which is preferred?

Actually, viewpoint
oriented is often
preferred since it
most closely
resembles the result
using standard 3D
geometry

This is the result

billboards

Real
spheres

44

Also called Impostors

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

45

Department of Computer Engineering

Particle system

Particles

Department of Computer Engineering

Partikelsystem

Department of Computer Engineering

Particle Systems
• Boids (flock of birds), see

OH 230
– 3 rules:

1. Separation:Avoid obstacles and
getting to close to each other

2. Alignment (strive for same
speed and direction as nearby
boids

3. Cohesion: steer towards center
of mass of nearby boids

49

What’s most important?

Texturing:
• Filtering: magnification, minification

– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– #texel accesses
– Anisotropic filtering

• Environment mapping – cube maps. How compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial

billboards, how to handle depth buffer for fully transparent
texels.

• Particle systems
50

