
Ray Tracing II

Tomas Akenine-Möller
Modified by Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

1

Image: Nvidia CUDA ray tracer

Lab 7
l YOU MUST START NOW

– Or you will not be finished in time!

2

Now, we have some basics in place
Make ray tracing run faster!
l First, describe shadow cache

– Simple idea
– typically gives great speedup for shadow rays.

l Second, spatial data structures
– Huge speed improvements

l Third, (and not treated much here), cache-aware
coding…

– Packet tracing,
l You may want to check out Ingo Wald’s interactive ray tracing work on the

web
l Intel’s Embree

– Shoot rays according to a Hilbert Curve
l See around middle of this lecture

– GPU ray tracing
3

Overview
l Shadow Cache
l Spatial data structures and ray traversal

– Bounding volume hierarchies (BVHs)
– BSP trees
– Grids

l Materials
– Fresnell Effect
– Beer’s Law

l Additional ray tracing techniques
4

The Shadow Cache

l It does not matter which object between the red ellipse
and the light is detected

– The point is in shadow if we find one object between
l Assume shadow ray A hits the triangle

– store triangle in shadow cache
l For next ray B, start with testing the triangle in the

shadow cache
l If high coherence, then we’ll get many hits in cache

image plane
light source

ray A

shadow ray A

ray B shadow ray B

5

Spatial data structures and
Ray Tracing
l Use these to get faster rendering

– Ray tracing is often slow
– Not useful for very few primitives (e.g., 2 spheres)

l The point:
– You don’t need to test for intersection between the ray

and all objects in the scene
– Rather, you test a small subset
– Typically, O(log n) instead of O(n) for each ray

l We will look at
– Bounding volume hierarchies (BVHs)
– BSP trees
– Grids

6

Bounding Volume Hierarchy (BVH)
l We’ll use axis-aligned bounding boxes

(AABBs) here
l The goal: find closest (positive) intersection

between ray and all objects in the scene
l Simple: traverse the tree from the root
l If the ray intersects the AABB of the

root, then continute to traverse the
children

l If ray misses a child, stop traversal
in that subtree

7

Example: ray against BVH

l Without BVH, we would test each triangle of
every object against the ray

l With BVH:
– Only test the triangles of the cube against the ray
– Plus some AABBs, but these are cheap

hit

hit

hit

miss

miss

8

Optimizations
l Always make a reference implementation

– And save it for benchmarking!

l Benchmarking is key here:
– Not all ”optimizations” yield better performance
– However, this definitely depends on what kind

of scene you try to render

l Preprocessing is good
– Use when possible

9

BVH traversal optimizations
1. Use current closest intersection as an upper bound on how far

the ray may ”travel”
l Example, if a ray hits a polygon at distance tbox, then we don’t need

to traverse a BV which is located farther than tbox.
2. Can also sort the BVs with respect to distance, and only

open up if necessary
3. Shadow cache can be used for shadow rays
4. Shading cache: store what object the reflection and

refraction ray hit last time, and for next reflection ray, test
this object first à if hit, then a good upper bound on
distance, and so we can discard everything beyond this
distance

Er
ic

 H
ai

ne
s,

”E
ffi

ci
en

cy
 Im

pr
ov

em
en

ts
 fo

r H
ie

ra
rc

hy
Tr

av
er

sa
l i

n
R

ay
 T

ra
ci

ng
”,

 G
ra

ph
ic

s G
em

s I
I,

pp
. 2

67
—

27
2,

 1
99

1.

10

A comment on previous slide
l Smits (ref to left) has noted that some of the

presented optimizations were not useful any
longer

l Reason: architectural changes in computers
l Bottleneck is often in memory accesses, not in

floating point operations

l Lesson: use benchmarks to test if your
optimizations gives better performance for a
couple of scenes

B
ria

n
Sm

its
, ”

Ef
fic

ie
nc

y
Is

su
es

 in
 R

ay
 T

ra
ci

ng
”,

 Jo
ur

na
l o

f G
ra

ph
ic

s
To

ol
s,

vo
l.

3,
 n

o.
 2

. p
p.

 1
—

14
, 1

99
8.

 I
t’s

 o
n

th
e

w
eb

, r
ea

d
it!

11

AABB hierarchy optimization
l An AABB is the intersection

of three slabs (2 in 2D)
l Observation: all boxes’ slabs

share the same plane normals
l Exploit this for faster AABB/ray

intersection!
l AABB/ray needs to compute one division

per x,y, and z
– Precompute these once per ray, and use for

entire AABB hierarchy

BOX

12

BVH traversal… Skip-pointer tree

l Standard (depth-first) traversal is
slow:
– Involves recursion
– And memory may be allocated once

per node

B
ria

n
Sm

its
, ”

Ef
fic

ie
nc

y
Is

su
es

 in
 R

ay
 T

ra
ci

ng
”,

 Jo
ur

na
l o

f G
ra

ph
ic

s
To

ol
s,

vo
l.

3,
 n

o.
 2

. p
p.

 1
—

14
, 1

99
8.

 I
t’s

 o
n

th
e

w
eb

, r
ea

d
it! A

B

D E F

C

l Left-child, right-sibling, parent pointers
avoids recursion
§ Instead follow pointers

A

B

D E F

C

l Store these in a clever way, with skip
pointers
• Store in depth first order
• A skip pointer, points to the place where

traversal shall continue given a miss

A
B
D
E
F
C

13

l If no miss, continue in depth first order
l If nodes are allocated linear in memory,

the we can expect many cache hits

l Optionally: Read the paper (see course
website)

A
B
D
E
F
C

14

B
ria

n
Sm

its
, ”

Ef
fic

ie
nc

y
Is

su
es

 in
 R

ay
 T

ra
ci

ng
”,

 Jo
ur

na
l o

f G
ra

ph
ic

s
To

ol
s,

vo
l.

3,
 n

o.
 2

. p
p.

 1
—

14
, 1

99
8.

 I
t’s

 o
n

th
e

w
eb

, r
ea

d
it!

BVH traversal… Skip-pointer tree

Axis-Aligned BSP trees
l (Not that different from BVHs with AABBs)
l An advantage here is

that we traverse the
space in a rough
sorted order along the
ray

l Pretty simple code as we will see

A

B

C

D E

15

If we have a fixed order for the splitting dimension (e.g.
x,y,z,x,y,z… or z,x,y,z,x,y… etc) this is called a kD-tree.

Axis-aligned BSP tree against ray
RayTreeIntersect(Ray, Node, min, max)
{

if(node==NULL) return no_intersection;
if(node is leaf)
{

test all primitives in leaf, discard if not between min and max;
return closest intersection point if any;

}
dist = signed distance along Ray to cutting plane of Node;
near = child of Node that contains ray origin;
far = child of Node that does not contain ray origin;
if(dist>0 and dist<max) // interval intersects plane of Node
{

hit=RayTreeIntersect(Ray,near,min,dist); // test near side
if(hit) return hit;
return RayTreeIntersect(Ray,far,dist,max); // test far side

}
else if(dist>max or dist<0) // whole interval is on near side

return RayTreeIntersect(Ray,near,min,max);
else // whole interval is on far side

return RayTreeIntersect(Ray,far,min,max);
}

K
el

vi
n

Su
ng

 a
nd

 P
et

er
 S

hi
rle

y,
 ”

R
ay

 T
ra

ci
ng

 w
ith

 th
e

B
SP

 T
re

e”
,

G
ra

ph
ic

s G
em

s I
II

, p
p.

 2
71

—
27

4,
 1

99
2.

16

Bonus

AA-BSP Tree Traversal
l Test the planes against the ray
l Test recursively from root
l Continue on the ”hither” side first

eye

0

1a

A B

1b

C 2

D E

1a 1b

2

0

RayTreeIntersect(Ray, Node, min, max){
if(node==NULL) return no_intersection;
if(node is leaf)

test all primitives in leaf, discard if not between min and max;
return closest intersection point if any;

dist = signed distance along Ray to cutting plane of Node;
near = child of Node that contains ray origin;
far = child of Node that does not contain ray origin;
if(dist>0 and dist<max) // interval intersects plane of Node

hit=RayTreeIntersect(Ray,near,min,dist); // test near side
if(hit) return hit;
return RayTreeIntersect(Ray,far,dist,max); // test far side

else if(dist>max or dist<0) // whole interval is on near side
return RayTreeIntersect(Ray,near,min,max);

else return RayTreeIntersect(Ray,far,min,max); // whole interval is on far side
}

max

dist

17 Ulf Assarsson © 2010

K
el

vi
n

Su
ng

 a
nd

 P
et

er
 S

hi
rle

y,
 ”

R
ay

 T
ra

ci
ng

 w
ith

 th
e

B
SP

 T
re

e”
,

G
ra

ph
ic

s G
em

s I
II

, p
p.

 2
71

—
27

4,
 1

99
2.

Bonus

dist

max

Grids
l A large box is

divided into a
number of equally-
sized boxes

lEach grid box stores pointers to all objects
that are inside it

lDuring traversal, only the boxes that the ray
intersect are visited, and objects inside these
boxes are tested

18

Grid Traversal Algorithm
l A modified line generating algorithm can be used

– Bresenham or DDA
l But easier to think in geometrical terms

– Red circles mark where ray goes from one grid box to the next

Intersection points
appear with irregular

spacing

But, look first at only
intersection with horizontal
lines, then vertical

These are regular spaced!
Use that in implementation

19

Traversal example
loop

if(tNextX < tNextY)
tNextX += tDeltaX;
X= X + stepX;

else
tNextY += tDeltaY;
Y= Y + stepY;

VisitVoxel(X,Y); tNextY

tNextX

tNextX = t-value at next x increment of cell index

tNextY = t-value at next y increment of cell index

stepX/Y = ± 120 Ulf Assarsson © 2010

At start, compute
tNextX and tNextY

ray origin

Grid Traversal (2)
l Easy to code up,
l Check out the following paper (for those

who want to implement in their path
tracer):
– Amantindes and Woo, ”A Fast Voxel Traversal

Algorithm for Ray Tracing”, Proc. Eurographics
'87, Amsterdam, The Netherlands, August 1987,
pp 1-10.

l Available on course website

21

Testing the same object more than
once in grids

l If an object intersects more
than one grid box, and a ray
traverses these, then you may
test the same object twice
(waste of perf.)

l Solution: assign a unique rayID
to each ray. For each tested
object, store the {hitPt,rayID}
with the object.

l If rayID of ray and object are
the same, then we have
already tested the object.

22
So then just fetch the hitpoint, stored with the object

This is called
mailboxing

rayID

(hitPt, rayID)

Choose a good grid resolution
l Assume n objects in scene, g is grid

resolution
3 ng = lOnly good for cubes!

lBetter to have different number of grid boxes
per side

lLet the number of grid boxes per side be
proportional to the length of the box side

l See Klimaszewkski and Sederberg, in IEEE Computer
Graphics & Applications, Jan-Feb, 1997, pp. 42—51.

23

Hierarchical and Recursive Grids
l We often use hierarchies in CG, so we

can do that now as well
l When a grid box (voxel) contains many

primitives, introduce a smaller grid in that
grid box

Hierarchical grid
Recursive grid

24

Which spatial data structure is
best?
l Depends on implementation, the type of scene, how complex

shading, etc, etc.
l Make timings on several different algorithms and choose what

works best for you
l Kd-trees:

– Fastest to traverse, little memory, slow to build
l AABB-hierachies:

– Fast to build, slower to traverse (not automatically in order along ray.
Fast to update for moving rigid objects.

– Split-BVHs are currently very popular.
l Grids

– Fast to build, middle fast to traverse, typically needs to be
hierarchial/recursive

– Hierarchical grids can be fast to update for moving rigid objects.

25

Split	Bounding	Volume	Hierarchies

• SBVHs

Bonus

Sometimes	it	is	
smart	to	let	
triangles	be	part	of	
several	BVs.

Split	Bounding	Volume	Hierarchies

• SBVHs

Bonus

Cache awareness
l To maximize cache locality, you can

utilize that the next ray likely will access
roughly the same memory locations since
it will traverse roughly the same part of
the tree and geometrical objects.
– To maximize spatial locality, shoot the rays

according to a Hilbert curve, instead of
sequentially scanline by scanline.

28

Hilbert Curve

29 Ulf Assarsson © 2010

2x2 pixels 4x4 pixels

16x16 pixels8x8 pixels

Z-curve

30

Shoot rays r = 0..w*h
Assume ray is the n:th ray, and n’s binary value is:

n = … y3 x3 y2 x2 y1 x1 y0 x0
e.g., n = 1 1 0 1 0 1 1 0 = 214

Then, the ray’s x and y coordinates are:
x_coord = … x3 x2 x1 x0 = 1 1 1 0 = 14
y_coord = … y3 y2 y1 y0 = 1 0 0 1 = 5

For primary ray n:
• the screen-x coord

is every 2nd bit of n,
starting with bit 0.

• the screen-y coord
is every 2nd bit of n,
starting with bit 1.

or “Morton order”

Faster Grid Traversal using
Proximity Clouds/Distance Fields

“Proximity Clouds
– An Acceleration
Technique for 3D
Grid Traversal”,

Daniel Cohen and
Zvi Sheffer

Ulf Assarsson © 2010

Demo
using SSE

31

MATERIALS
l Types of material, and how light interacts

– Glass, plastic... (dielectrics)
– Metal (conductive)

32

Smooth Metal
(slät metall)

l Often used material, and well-understood in
computer graphics

l We’ll present a good approximation here
l Metals obey three ”laws”:

– The highlight often has the same color as the diffuse
– Law of reflection
– The Fresnel equations:

How much is reflected and how much is absorbed
– Though, Fresnel effect for metals is subtle
– Higher for dieletric materials

33

Smooth metals (2)
l Highlight

plastic metal

Types of highlightsl The law of reflection
l If the metal is smooth, we can say that it

reflects perfectly in the reflection direction
l Fresnel equations depend on

• Incident angle
• Index of refraction (chromium oxide: 2.7)

l Can compute polarized, and unpolarized
values for the light (in CG, we ignore
polarization, often)34

l At some places, the reflection is saturated (almost white), but mostly, it is
clearly modulated by the copper color

– Plastic adds the pure reflection color
– Metal adds a modulated reflection color35

Smooth metals (3)
Fresnel
l F is describes the reflectance at a surface

at various angles (n=index of refraction)

l Set refraction index n=1.5, then you get:

Im
ag

es
 c

ou
rte

sy
of

 S
te

ve
 W

es
tin

M
et

al
s

D
ie

le
ct

ric
s

€

c = v • n

36

=angle

An approximation to Fresnel
(by Schlick)

l v is the vector from the eye to the point on
the surface

l n is the surface normal
l R0 is the reflectance when v.n=1
l Works well in practice

l Use F for your reflection rays in shading:
– F*trace(reflection_vector)
– Can be used for rasterization too (e.g. when applying result from

cubemaps)

€

F ≈ R0 + (1− R0)(1− v⋅ n)
5

37

Fresnel, example
l What does it look like
l A black dielectric sphere (glass or plastic)

– in computer graphics, glass can be black
l Which has the Fresnel effect?

Images courtesy of Steve Westin, Cornell University38

Smooth dielectric materials
l A dielectric is a transparent material
l Refracts light
l Filters light (due to impurities in material)
l Examples (index of refraction):

– Glass = 1.5
– Plastic = ~1.5
– Diamond = 2.4
– Water = 1.33
– Air = 1.0

39

The following 17 slides are from an
excellent presentation at Microsoft

Meltdown 2004,
”Advanced Real-Time Reflectance”,

by Dan Baker, Naty Hoffman and Peter-
Pike Sloan

The corresponding paper can be found here:
www.gdconf.com/archives/2004/hoffman_naty.pdf

40

Smooth Dielectric
Low reflectance
(water, glass, plastic,
etc. ~5%)
Refracted light
continues inside the
material, being
scattered by
impurities until it is
absorbed or re-exits
the surface

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Diffuse / Specular Tradeoff

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Semi-Rough (Glossy)
Most surfaces are not flat at all
scales

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)
Most surfaces are not flat at all
scales

Many surfaces which appear flat at
visible scales have complex
microscale structure

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)
Most surfaces are not flat at all scales

Many surfaces which appear flat at visible
scales have complex microscale structure
At the smallest scale we can often treat the
surface as flat again

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)
A surface patch contains micro-facets
with continuously distributed normals
Light reflects off facets, ‘spreads
out’
In ‘semi-rough’ surfaces distribution
of micro-normals biased to macro-
normal

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)
A surface patch contains micro-facets
with continuously distributed normals
Light reflects off facets, ‘spreads
out’
In ‘semi-rough’ surfaces distribution
of micro-normals biased to macro-
normal

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough (Glossy)
Lights reflect as highlights
Blurry reflection of environment

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Semi-Rough Metal
The reflectance of a metallic rough
surface is dominated by the highlight
Multiple-bounce reflections create an
additional, more diffuse reflection

More strongly colored since each bounce
increases the colors saturation

From Advanced Real-Time
Reflectance, by Dan Baker,
Naty Hoffman & Peter-Pike

Sloan

Bonus

Semi-Rough Dielectric
Highlight tend to be weaker in
dielectric surfaces due to lower
reflectance

For the same reason, multiple-bounce
reflections are less noticeable
Diffuse mostly due to subsurface
scattering

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Rough Dielectric
Normal distribution is extremely
random
Almost uniformly diffuse with some
retroreflection

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan

Bonus

Smooth dielectric materials (2)
Homegeneous impurities
E.g. Water, transparent plastic, glass…
l Light is attenuated with Beer’s law
l Loses intensity with: dI=-C I ds
l I(s)=I(0)e-Cs

l Compute once for each RGB
l Also, use the Fresnel equations for these

materials

57

Beer’s Law

Tomas Akenine-Mőller © 2002

Constant intensity decrease at
greater distance due to out-
scattering and absorption.

dI = −CIds

I(s) = I(0)e−C*s ds
I(0) I(s)

s

Beer’s law

The taller the glass, the darker the brew,
The less the amount of light that comes through

59

RAY TRACING ADDITIONALS
What more can we do with ray tracing?
l A million things…
l Geometrical objects, etc.
l Optical effects
l Speed-up techniques
l Animation

60

Geometry
l Perfect for object-oriented programming

– Makes it simple to add new geometrical objects
l Add a transform to each object
l The standard trick is not to apply the

transform matrix to the object, but instead
inverse-transform the ray

61

Geometry:
Constructive Solid Geometry (CSG)
l Boolean operations on objects

– Union
– Subtraction
– Xor
– And

l Simple to implement
l Must find all intersections with a ray and

an object
l Then do this for involved objects, and

apply operators to found interval
62

Geometry:
Constructive Solid Geometry (CSG)
l Examples, operators:

63

A union B (OR)

A and B

A not B
(A AND !B)

Geometry:
Constructive Solid Geometry (CSG)
l Another

example
l Done with 4

cylinders

64

Constructive Solid Geometry (CSG)
How to implement
l Try: sphere A minus sphere B

A
B

l In summary: find both entry and exit points on both
spheres. Such two points on a sphere is an interval (1D).
Apply the operator on these intervals65

CSG
l Works on any geometrical object, as long

as you can find all intersection point
along a line
– So, be careful with optimizations…

l And objects should be closed
– Example: put caps on cylinder.

66

Geometry
l Quadrics (2:a-gradsytor)

– Cone, cylinder, paraboloids hyperboloids, etc.

l Higher order polynomial surfaces
– Example: torus, 4th degree

l Fractal landscapes
– Pretty simple, fast algorithm exist

67

68

Perlin Noises in 1-D

Bonus

Weighted Sums

K. Perlin

noise:
-Worn metal
-Water wave

Sum[1/f * noise]:
-Rock
-Mountains
-Clouds

Sum[1/f * |noise|]:
-Turbulent flows
-Fire
-Marble
-Clouds

Sin(x +
Sum[1/f *|noise|]):
-Turbulent flows
-Fire
-Marble

Bonus

71

Geometry:
Blobs
l A method for blending implicit surfaces

(e.g., spheres, x2+y2+z2=1)
l After blend, you get a higher order

surface
l Need a numerical root finder

72

Blob example

73

Optics and more…
l You can add

– Fog
– Light fall off : 1/d2

– Fresnel equations
– Texture mapping
– Prodedural texturing

74

WebGL examples:
• https://www.shadertoy.com/vi

ew/MdfGRX

Texturing and Modeling – a procedural approach, by Perlin, Musgrave, Ebert…

Optics
l Depth-of-field

– Add more samples on a virtual camera lens

75

Soft shadows
l Higher level of realism
l Examples

76

Soft shadows
l Why do they appear?
l Because light sources have an area or

volume (seldom point lights)
point source

umbra

area source

umbrapenumbra77

Example

78

Glossy (blurry) reflections
l Trace many reflection directions

– Each perturbed slightly

Do the same
with transmission

79

Caustics

Photorealism

etc

80

Speed-up techniques
l For eye rays:

– Render scene with OpenGL
– Let each triangle or object have a unique color
– Then read back color buffer
– For each pixel, the color identifies the object
– You need fast rendering in order to gain from

this

81

Typical Exam Questions
– what you need to know

l Draw grid (plain/hierarchical/recursive)
– Mailboxing

l Draw all our other spatial data structures:
– Octree/quadtree, AABSP-tree (kd-tree), polygon-aligned BSP tree, Sphere/AABB/OBB-

tree,

l What’s a
– skip-pointer tree?
– Shadow cache?
– Shading cache?
– Kd-tree? (=AABSP with fixed split-plane order)

l Descibe ray/BVH intersection test
l The Fresnel-effect: metal vs dielectrics)

– How does glass/water/air behave?
– How does metal behave?

l Describe how to implement ray/object intersection for Constructive Solid
Geometry

82

