
Department of Computer Engineering

Graphics Hardware

Ulf Assarsson



2

Graphics hardware – why?
l About 100x faster!
l Another reason: about 100x faster!
l Simple to pipeline and parallelize

l Current  hardware based on triangle rasterization 
with programmable shading (e.g., OpenGL 
acceleration)

l Ray tracing: there are research architetures, and 
few commercial products
– Renderdrive, RPU, (Gelato), NVIDIA OptiX
– Or write your own GPU ray-tracer



Perspective-correct	
interpolation	of	texture	

coordinates	
(and	actually	all	screen-space-interpolated	per-

vertex	data)



4



5

Perspective-correct texturing
l How is texture coordinates interpolated over a triangle?
l Linearly?

Linear interpolation Perspective-correct interpolation
l Perspective-correct interpolation gives foreshortening effect!
l Hardware does this for you, but you need to understand this 

anyway!



6



7

Recall the following

l Perspective projection introduces a non-linear
transform by the homogenization step:
– Before projection, v, and after p  (p=Mv)
– After projection pw is not 1!
– Homogenization: (px /pw , py /pw , pz /pw , 1)
– Gives (px´, py ´ , pz´ , 1)

p =Mv =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/ d 0

"

#

$
$
$
$

%

&

'
'
'
'

vx
vy
vz
1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

vx
vy
vz

−vz / d

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Vertices are projected onto 
screen by non-linear 
transform. Hence, tex coords
cannot be linearly interpolated 
in screen space (just like a 3D-
position cannot be).



8

Texture coordinate interpolation
l Linear interpolation does not work
l Rational linear interpolation does:

– u(x)=(ax+b) / (cx+d)   (along a scanline where y=constant)
– a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v)

l Not really efficient to compute a,b,c,d per scan line
l Smarter:

– Compute (u/w,v/w,1/w) per vertex
– These quantities can be linearly interpolated!
– Then at each pixel, compute 1/(1/w)=w
– And obtain: (w*u/w,w*v/w)=(u,v)
– The (u,v) are perspectively-correct interpolated

l Need to interpolate shading this way too
– Though, not as annoying as textures

l Since linear interpolation now is OK, compute, e.g., 
D(u/w)/Dx, and use this to update u/w when stepping in the 
x-direction (similarly for other parameters)

Mathematic derivation: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.
211&rep=rep1&type=pdf



9

Put differently:
l Linear interpolation in screen space does not work for u,v
l Why:

– We have applied a non-linear transform to each vertex position
(x/w, y/w, z/w, w/w). 
l Non-linear due to 1/w – factor from the homogenisation

l Solution:
– We must apply the same non-linear transform to u,v

l E.g. (u/w, v/w). This can now be correctly screenspace interpolated since
it follows the same non-linear (1/w) transform (and interpolation) as (x/w, y/w, 
z/w).

l When doing the texture lookups, we still need (u,v) and not (u/w, v/w).
l So, multiply by w. But we don’t have w at the pixel. 
l So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each

vertex.
l Then at each pixel:

– ui = (u/w)i / (1/w)i
– vi = (v/w)i / (1/w)i

For a formal proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer Graphics 
and Applications, p78-82, May/June 1998

Need to interpolate shading this way too, though, not as annoying as textures



Overview	of	GPU	architecture

Take-away:	bandwidth	(cost	of	memory	accesses)	
is	a	major	problem

-History	/	evolution
- GPU	design:	Several	cores consisting	of	many	ALUs
(NVIDIA	terminology:	Streaming	Multiprocessors	(SMMs) of	many	cores

- GPU	vs	CPU



11

Background:
Graphics hardware architectures
l Evolution of graphics hardware has started 

from the end of the pipeline
– Rasterizer was put into hardware first (most 

performance to gain from this)
– Then the geometry stage
– Application will not be put into GPU hardware (?)

l Two major ways of getting better 
performance:
– Pipelining
– Parallellization
– Combinations of these are often used



12

Parallellism
l ”Simple” idea: compute n results in parallel, then

combine results
l Not always simple!

– Try to parallelize a sorting algorithm…
– But vertices are independent of each other, and also pixels, so 

simpler for graphics hardware

l Can parallellize both geometry and rasterizer stage:



Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

Fragment 
shader

Fragment 
shader

Fragment 
shader…

Fragment 
Merge

Fragment 
Merge

Fragment 
Merge

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

Fixed function hardware

Fixed function hardware

The graphics-pipeline’s funcional
blocks and their relation to hardware 

(for modern graphis card)



Department of Computer EngineeringOlder architecture (2006)



Beyond Programmable Shading 15

Graphics Processing Unit - GPU

§ NVIDIA Geforce GTX 580

1.5 GB RAM Memory

GPU



Department of Computer EngineeringNVIDIA Maxwell
(GTX 980)

2014



Department of Computer EngineeringNVIDIA Maxwell 2014



Department of Computer EngineeringNVIDIA Maxwell

Each SMM: 
• 128 ALUs
• 96KB L1 cache
• 8 TexUnits
• 32 Load/Store 

units for access 
to global 
memory

16 SMMs (“Cores”)
2MB L2 cache
64 output pixels / clock 
(i.e., 64 ROPs)
2048 ALUs (“cores”)
~6 Tflops



Department of Computer EngineeringNVIDIA Pascal GP100
(GTX 1080 / Titan X)

3584 cores
11 Tflops
15.3Btrans.
16 GB Ram
4MB L2
~64KB L1
256KB regs/SM
224 tex units

2016



Department of Computer Engineering

64 cores/SM
60 SM / GPU

= 3840 cores -
disabled spill 
= 3584 cores 

4MB

2016



Department of Computer Engineering



Department of Computer EngineeringNVIDIA Volta GV100

64 cores/SM
84 SM / GPU

= 5376 cores -
disabled spill 
= 5120? cores 

2018



Department of Computer EngineeringNVIDIA Volta GV100

1 madd

2018

SM:
64 32-bit fp/int cores
512 16-bit cores

Tensor core 
per clock:



24

Graphics Hardware History
l 80’s: 

– linear interpolation of color over a scanline
– Vector graphics

l 91’ Super Nintendo, Neo Geo,
– Rasterization of 1 single 3D rectangle per frame (FZero)

l 95-96’: Playstation 1, 3dfx Voodoo 1
– Rasterization of whole triangles (Voodoo 2, 1998)

l 99’ Geforce (256)
– Transforms and Lighting (geometry stage)

l 02’ 3DLabs WildCat Viper, P10
– Pixel shaders, integers, 

l 02’ ATI Radion 9700, GeforceFX
– Vertex shaders and Pixel shaders with floats

l 06’ Geforce 8800
– Geometry shaders, integers and floats, logical operations

l Then:
– More general multiprocessor systems, higher SIMD-width, more cores



Direct View Storage Tube
• Created by Tektronix

–Did not require constant refresh
–Standard interface to computers

• Allowed for standard software
• Plot3D in Fortran

–Relatively inexpensive
• Opened door to use of computer 

graphics for CAD community

Tektronix 4014



26

l In GeForce3: 600-800 pipeline stages!
– 57 million transistors
– First Pentium IV: 20 stages, 42 million transistors,

l Evolution of cards:
– X800 – 165M transistors
– X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
– GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem
– GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz)
– GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, 612 MHz core (1500 for 

shaders), 1080 MHz  mem (effective 2160 MHz)
– Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
– ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, 850 MHz,GDDR5,256bit mem bus,
– Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus, 

40Gtexels/s
– GXT580: 3Gtrans, 772/1544, Mem: 2004/4008 MHz, 192.4GB/s, GDDR5,  384bit mem bus, 

49.4 Gtex/s
– GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDR5, 256-bit mem bus.
– GTX780: 7.1G, core clock: 837MHz, 336 GB/s, Mem clock: 6GHz GDDR5, 384-bit mem bus
– GTX980: 7.1G?, core clock: ~1200MHz, 224GB/s, Mem clock: 7GHz GDDR5, 256-bit mem bus
– GTX Titan X: 8Gtrans, core clock: ~1000MHz, 336GB/s, Mem clock: 7GHz GDDR5, 384-bit mem bus
– Titan X: 12/15Gtrans, core clock: ~1500MHz, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2
– Nvidia Volta: 21.1Gtrans, core clock: ~1500MHz, 900GB/s, Mem: 4096-bit HBM2, 
Lesson learned: #trans doubles ~per 2 years. Core clock increases slowly. Mem clock –increases with 
new technology DDR2, DDR3, GDDR5, HBM2 and with more memory busses (à 64-bit). Now stacked.
– We want as fast memory as possible! Why?

l Parallelization can cover for slow clock. Parallelization more energy efficient than high clock 
frequency. Power consumption prop. to freq2.

l Memory transfers often the bottleneck

2008

2006

2004
2005

2001

2004
2005

2010

2011

2007

2012
2013
2014
2015
2016
2018

Graphics Hardware History



GPU- Nvidia’s Pascal	2016

768	KB	L2	$

RAM	– GDDR5X
16 GB,	~10	Gbps

Core	1

L1	$

Core	1

L1	$

Core	60

L1	$ ~64 KB per each 
64 SIMD

60 cores à
64-SIMD width
(2*4*8)

Overview:

Bandwidth 
~480 GB/s

Bus: 
256/384/4096 
bits
Compare to 
ATI 2900: 
- 2x512bits

Larrabee:
- 2x512bits

Bus

Wish:
3584 ALUs à 1 float/clock => 14KB/clock
~1.5GHz core clock => 21500 GB/s request

We have ~480GB/s. In reality we can do 20-40 instr. between each RAM–
read/write. Solved by L1$ + L2$ + latency hiding (warp switching)

GPU core has much simpler
• instruction set 
• cache hierarchy
than a CPU core



CPU	- 2011
Core	1 L1	d$

L1	i$
Core	2 L1	d$

L1	i$

Core	3 L1	d$
L1	i$

Core	4 L1	d$
L1	i$

L2	shared	$

32 KB
32 KB

2-4 MB
L3	shared	$ 8-10 MB

MC

1 – 8 cores à
4 SIMD floats
(16 SIMD for 
bytes)

256bits 
internal 
buses

Graphics 
Memory 
Controller 
HUB

64 bits

AVX:
Intel’s Sandybridge
AMD’s Bulldozer

FSB • 8	cores	à	4	floats
Þ We	want	128	bytes/clock	

(e.g.	from	RAM)
Þ 128GByte/s,	1GHz	CPU
• In	addition,	x3,	since:

r1	=	r2	+	r3;
In	reality:	6-12GB/s
Solved	by	$-hierarchy	+	

registers



29

l On top of that bandwith usage is never 100%.
l However, there are many techniques to reduce

bandwith usage:
– Texture caching with prefetching
– Texture compression
– Z-compression
– Z-occlusion testing (HyperZ)

Memory bandwidth usage is huge!!



30

Z-occlusion testing and Z-
compression
l One way of reducing bandwidth

– ATI Inc., pioneered with their HyperZ technology
l Very simple, and very effective
l Divide screen into tiles of 8x8 pixels
l Keep a status memory on-chip

– Very fast access
– Stores additional information that this algorithm uses

l Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears

Bonus



31

Architecture of
Z-cull and Z-
compress

l Store zmax per tile, and a flag (whether cleared, 
compressed/uncompressed)

l Rasterize one tile at a time
l Test if zmin on triangle is farther away than tile’s zmax

– If so, don’t do any work for that tile!!!
– Saves texturing and z-read for entire tile – huge savings!

l Otherwize read compressed Z-buffer, & unpack
l Write to unpacked Z-buffer, and when finished compress and send 

back to memory, and also: update zmax
l For fast Z-clears: just set a flag to ”clear” for each tile

– Then we don’t need to read from Z-buffer, just send cleared Z for that tile

Bonus



32

X1800 GTO
l Real example

Z-cull

Z-compress

Also note texture compress 
and color compress



Taxonomy	of	hardware	design
for	how	to	resynchronize	(sort)	parallelized	work.

Outputs	to	frame	buffers	must	respect	incoming	triangle	
order.	

Take-aways:	Sort-first,	Sort-middle,	Sort-Last	Fragment,	
Sort-Last	Image



Taxonomy of Hardware
l We can do many computations in parallel:

– Pixel shading, vertex shading, geometry shading
l x,y,z,w r,g,b,a

l But results need to be sorted somewhere 
before reaching the screen.
– Operations can be parallelized but result on screen 

must be as if each triangle where rendered one by 
one in their incoming order (according to OpenGL 
spec)
l I.e., for every pixel, the rasterized fragments must be merged to 

the buffers in the original input triangle order 
l E.g., for blending (transparency), (z-culling + stencil test)34



35

Taxonomy of hardware
l Need to sort from model space to screen

space
l Gives four major 

architectures:
– Sort-first
– Sort-middle
– Sort-Last Fragment
– Sort-Last Image

l Will describe these briefly. Sort-last fragment 
(and sort middle) are most common in 
commercial hardware



36

Sort-First
l Sorts primitives before geometry stage

– Screen in divided into large regions
– A separate pipeline is responsible for each 

region (or many)
– But vertex shader can change screen location!

l G is geometry, FG & FM is part of rasterizer (R)
– A fragment is all the generated information for a pixel on a triangle
– FG is Fragment Generation (finds which pixels are inside triangle)
– FM is Fragment Merge (merges the created fragments with various buffers (Z, 

color))
l Not explored much at all, since:

l Poor load balancing if uneven triangle distribution between regions.
l Vertex shader can cange triangle position

Sorting/dividing work to parallel execution units.



37

Sort-Middle
l Sorts betwen G and R
l Pretty natural, since after G, we know the 

screen-space positions of the triangles
l Older/cheaper hardware uses this

– Examples include InfiniteReality (from SGI)                                and the 
KYRO architecture (from Imagination)

l Spread work arbitrarily among G’s
l Then depending on screen-space position, sort to different R’s

– Screen can be split into ”tiles”. For example:
l Rectangular blocks (8x8 pixels)
l Every n scanlines

l The R is responsible for rendering inside tile
l Bads:

l A triangle can be sent to many FG’s depending on overlap (over tiles)
l May give poor load balancing if triangles are unevenly distributed over 

the screen tiles



38

Sort-Last Fragment
l Sorts betwen FG and FM
l XBOX, PS3, nVidia use this
l Again spread work among G’s
l The generated work is sent to FG’s
l Then sort fragments to FM’s

– An FM is responsible for a tile of pixels
l A triangle is only sent to one FG, so this avoids

doing the same work twice
l (Bad: many more fragments to sort than triangles)



39

Sort-Last Image
l Sorts after entire pipeline
l So each FG & FM has a separate frame

buffer for entire screen (Z and color)
l Typically: one whole graphics card per 

pipeline.

l After all primitives have been sent to the pipeline, 
the z-buffers and color buffers are merged into one 
color buffer

l Can be seen as a set of independent pipelines
l Huge memory requirements!
l Used in research, but probably not commerically



Department of Computer Engineering

Application

PCI-E x16

Vertex 
shader

Vertex 
shader

Vertex 
shader

…
Primitive assembly

Clipping

Fragment Generation

Fragment 
shader

Fragment 
shader

Fragment 
shader

…

Fragment 
Merge

Fragment 
Merge

Fragment 
Merge

…

Geo 
shader

Geo 
shader

Geo 
shader

Sort



Near-future	GPUs



Current	and	Future	Multicores	in	Graphics
• Cell	– 2005

– 8	cores à	4-float	SIMD	
– 256KB	L2	cache/core
– 128	entry register	file
– 3.2	GHz

• NVIDIA	8800	GTX	– Nov	2006
– 16	cores à	8-float	SIMD	(GTX	280	- 30	cores à	8,	june ’08)
– 16	KB	L1	cache,	64KB	L2	cache	(rumour)
– 1.2-1.625	GHz

• Larrabee – ”2010”
– 16-24	cores à	16-float	SIMD	(Xeon Phi:	61	cores,	2012)
– Core =	16-float	SIMD	(=512bit	FPU)	+		x86	proc with loops,	branches +	scalar ops,	4	threads/core
– 32KB	L1cache,	256KB	L2-cache	(512KB/core)
– 1.7-2.4	GHz	(1.1	GHz)

• NVIDIA	Fermi	GF100	– 2010,	(GF110	2011)	
– 16	cores à	2x16-float	SIMD	(1x16	double	SIMD)
– 16/48	KB	L1	cache,	768	KB	L2	cache

• NVIDIA	Kepler	2012	- 16	cores à	2x3x16=96	float	SIMD

• NVIDIA	Kepler	2013	- 16	cores à	2x6x16=192	float	SIMD

• NVIDIA	Titan	X	2016	– 60	cores à	2x4x8=64	float	SIMD
• NVIDIA	Volta	2018	– 84	cores à	64	float	SIMD	+	tensor cores (16-bit	matrix	mul+add)

PowerXCell 8i Processor – 2008
– 8 cores à 4-float SIMD 
– 256KB L2 cache
– 128 entry register file
– but has better double precission 

support



NVIDIA	year	2020
• Exaflop machine:
• Google	on:

"The	Challenge	of	Future	High-
Performance	Computing”	Uppsala

• http://media.medfarm.uu.se/play/video/
3261#__utma=1.4337140.1361541635.1
361541635.1361541635.1&__utmb=1.4.
10.1361541635&__utmc=1&__utmx=-
&__utmz=1.1361541635.1.1.utmcsr=(dir
ect)%7Cutmccn=(direct)%7Cutmcmd=(n
one)&__utmv=-&__utmk=104508928

• Bill	Dally,	Chief	Scientist	&	sr VP	of	
Research,	NVIDIA,	prof.	of	Engineering,	
Stanford	Univ.

• “Energy	efficiency	is	
key	to	performance”
– Flops/W.



If	we	have	time…



How	create	efficient	GPU	
programs?

Answer:	coallesced memory	
accesses



Beyond Programmable Shading 46

Graphics Processing Unit - GPU

4 GB RAM Memory

GPU

512/384/320/256 bits bus

= memory element (32 
bits) 

Bad utilization of the 
memory bus, which 
typically is the 
bottleneck!

Conceptual 
layout:



Beyond Programmable Shading 47

512/384/320/256 bits bus

Graphics Processing Unit - GPU

4 GB RAM Memory

GPU

= memory element (32 
bits) 

Much better utilization 
of the memory bus!

Read 32 
coallesced floats 
for max 
bandwidth usage



Beyond Programmable Shading 48

4 GB RAM Memory

GPU

512 bits bus

Let’s look at the GPU

NVIDIA Fermi – GTX480, 2010. 16 cores



Beyond Programmable Shading 49

Let’s look at the GPU

NVIDIA Kepler: 15-16 multi-processors (GTX 680, ~2012)



Beyond Programmable Shading 50

Core 1

Core 2

Core 16

Kepler: 15-16 multi-processors

Core X

Let’s look at the GPU
4 GB RAM

L1 
cache

L1 
cache

L1 
cache

192 ALUs or ”lanes”
(logically: 6 x 32-SIMD 
width)
6x32 mul/add per 1-2 
clocks
(6x32 ”threads”)

SIMD = single 
instruction multiple 
data

L2 Cache

Terminology

CPU: Core ALU (SIMD lane)

NVIDIA: Streaming core
Multiprocessor

ATI SIMD core stream core



Beyond Programmable Shading 51

Core X

To RAM or 
L1/L2 cache

From RAM or 
L1/L2 cache

Core 1

Core 2

Core 16

Let’s look at the GPU

Kepler: 15-16 multi-processors

Each core:
• executes one 

program 
(=shader).

Each cycle:
• 192 flops
• 6x32 SIMD
for up to 4 
different instr.

6x



Beyond Programmable Shading 52

Core X

To RAM or 
L1/L2 cache

From RAM or 
L1/L2 cache

Core 1

Core 2

Core 16

Let’s look at the GPU

32 add/mul etc
in 2 clock cycles

Kepler: 15-16 multi-processors

6x

Each core:
• executes one 

program 
(=shader).

Each cycle:
• 192 flops
• 6x32 SIMD
for up to 4 
different instr.



CUDA
• A	kernel	(=CUDA	program)	is	executed	by	100:s-1M:s	
threads
– A	”warp” =	32	threads,	one	thread	per	ALU
– Warps	(one	to	~32)	are	grouped	into	one	block
– Block:	executed	on	one	core

• One	to	48	warps	execute	on	a	core

Core	1

L1	$

Core	1

L1	$

Core		N

L1	$

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads

Block

Warp = 32 
threadsWarp = 32 

threadsWarp = 32 
threads



Memory	Acceses	– Global	Memory

• Coalesced	reads	and	
writes

• For	maximum	
performance,	each	thread	
should	read	from	the	
same	16-float	block	(128	
bytes)
– i.e.,	the	same	cache-line

4 GB RAM



Fermi
• Global	mem	accesses.

• One	transaction:

• Two	transactions:



Beyond Programmable Shading 56

Core X

To RAM or 
L1/L2 cache

From RAM or 
L1/L2 cache

Core 1

Core 2

Core 16

Efficient Programming

32 add/mul etc
in 2 clock cycles

Fermi: 16 multi-processors à 2x16 SIMD width

• If	your	program	can	be	constructed
this	way,	you	are	a	winner!

• More	often	possible	than	anticipated
• Stream	compaction
• Prefix	sums
• Sorting

1 3 9 4 2 5 7 1 8 4 5 9 3

0 1 4 13 15 … … … … … … … …

input

output

19   5  100   1   63    79

1    5   19   63  79  100



Department of Computer Engineering

Shaders

// Fragment Shader:
#version 130
in  vec3 outColor;
out vec4 fragColor;

void main() 
{

fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 130

in  vec3 vertex;
in  vec3 color;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix; 

void main() 
{

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
outColor = color;

}



Shaders	and	coallesced	memory	accesses
• Each core (e.g.	192-SIMD)	executes the	

same	instruction per	clock cycle for	either a:
• Vertex	shader:	

– E.g.	192	vertices

• Geometry shader
– E.g.	192	triangles

• Fragment	shader:		
– E.g.	192	pixels
in	blocks	of at	least 2x2	pixels	
(to compute texture filter	derivatives)	.
Here is	an	example of blocks	
4x8	=	32	pixels:

– However,	many architectures can
execute different	instructions,	of the	
same	shader,	for	different	warps (groups
of 32	ALUs)

Core	1

L1	$

Core	2

L1	$

Core	
16

L1	$

GPU



Shaders	and	coallesced	memory	accesses
• For	mipmap-filtered texture lookups in	a	

fragment	shader,	this can provide coallesced
memory accesses.

Core	1

L1	$

Core	2

L1	$

Core	
16

L1	$

GPU



Thread	utilization

• If	(…)
– Then,	a	=	b	+	c;
– …

• Else
– a	=	c	+	d;

…the	core	must	
execute	both	paths	
if	any	of	the	32	
threads	need	the	if	
and	else-path.

But	not	if	all	need	the	
same	path.

• Each core executes one program (=shader)
• Each of the 192 ALUs execute one ”thread” (a shader for a 

vertex or fragment)
• Since the core executes the same instruction for at least 32 

threads (as far as the programmer is concerned)...



l Perspective correct
interpolation (e.g. for textures)

l Taxonomy:
– Sort first
– sort middle
– sort last fragment
– sort last image

l Bandwidth
– Why it is a problem and how to ”solve” it

l L1 / L2 caches
l Texture caching with prefetching
l Texture compression, Z-compression, Z-occlusion testing (HyperZ)

l Be able to sketch the functional blocks and relation to hardware for a 
modern graphics card (next slide→)

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (u/w)ip / (1/w)ip
vip = (v/w)ip / (1/w)ip

where ip = screen-space interpolated value from 
the triangle vertices.

Sort-
first

Sort-middle

Sort-last 
fragment
Sort-last 
image

Need to know:



Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

The graphics-pipeline’s funcional
blocks and their relation to hardware

Fixed function hardware

Fixed function hardware
Fragment 
shader

Fragment 
shader

Fragment 
shader

Fragment 
Merge

Fragment 
Merge

Fragment 
Merge

…
Sort


