
Filtering theory:
Battling Aliasing with Antialiasing

Department of Computer Engineering
Chalmers University of Technology

1



Tomas Akenine-Mőller © 2003

What is aliasing?

2



Tomas Akenine-Mőller © 2003

Why care at all?

l Quality!!
l Example: Final fantasy

– The movie against the game
– In a broad way, and for most of the scenes, the 

only difference is in the number of samples and 
the quality of filtering

3



Physical correctness often less 
important than filtering

4



Tomas Akenine-Mőller © 2003

Computer graphics is a
SAMPLING & FILTERING process!
l Pixels

l Texture

l Time

Demo

5



Motion blur (long exposure times)

6



Tomas Akenine-Mőller © 2003

Sampling and reconstruction

l Sampling: from continuous signal to discrete
l Reconstruction recovers the original signal
l Care must be taken to avoid aliasing
l Nyquist theorem: the sampling frequency 

should be at least 2 times the max frequency in 
the signal

l Often impossible to know max frequency 
(bandlimited signal), or the max frequency is 
often infinite…7



Tomas Akenine-Mőller © 2003

Sampling theorem
l Nyquist theorem: the sampling frequency 

should be at least 2 times the max 
frequency in the signal

f=1 rpm

1 sample per revolution

A little more than 1 sample/revolution

2 samples per revolution

>2 samples per revolution
8



Tomas Akenine-Mőller © 2003

Sampling is simple, now turn to: 
Reconstruction
l Assume we have a bandlimited signal 

(e.g., a texture)
l Use filters for reconstruction

9



Tomas Akenine-Mőller © 2003

Reconstruction with box filter 
(nearest neighbor)

10



Tomas Akenine-Mőller © 2003

Reconstruction with tent filter

32x32
texture

Nearest neighbor Linear

11



Reconstruction with sinc filter

l In theory, the ideal filter
l Not practical (infinite extension, negative)

12



Resampling
Enlarging or diminishing signals
l Enlarging easy: just use filter (e.g. box or 

tent) to compute intermediate values.
l For minification, one way is to take the 

average of the corresponding samples

32x32
texture

Nearest neighbor

13



Tomas Akenine-Mőller © 2003

Screen-based
Antialiasing
l Hard case: edge has infinite frequency
l Supersampling: use more than one 

sample per pixel

14



Tomas Akenine-Mőller © 2003

Formula and…
examples of different schemes

l wi are the weights in [0,1]
l c(i,x,y) is the color of sample i inside pixel

),,(),(
1

yxiwyx
n

i
iå

=

= cp

15



16 1 samples/pixel

Spiral from the Manderbrot set



17 4 samples/pixel

Spiral from the Manderbrot set



18 25 samples/pixel

Spiral from the Manderbrot set



19 400 samples/pixel

Spiral from the Manderbrot set



Tomas Akenine-Mőller © 2003

Jittered sampling
l Regular sampling cannot eliminate aliasing –

only reduce it!
l Why?
l Because edges represent infinite frequency
l Jittering replaces aliasing with noise
l Example:

20



Tomas Akenine-Mőller © 200321



Tomas Akenine-Mőller © 2003

Moire example

Ulf Assarsson, 2004

Noise + gaussian blur
(no moire patterns)

Moire patterns

22



Patterns
l Checker texture zoomed out until square < 1 pixel

23

No AA With AA Sinc-filter AA



SSAA, MSAA and CSAA
l Super Sampling Anti Aliasing

– Stores duplicate information (color, depth, stencil) for each sample and 
fragment shader is run for each sample.

– Corresponds to rendering to an oversized buffer and downfiltering.
l Multi Sampling Anti Aliasing

– Shares some information between samples. E.g:
l Frament shader only run once per fragment. 
l Stores a color per sample and typically also a stencil and depth-value per sample

l Coverage Sampling Anti Aliasing
– Idea: Don’t even store unique color and depth per sample.

Store index in each subsample, into a buffer 
per pixel of 4-8 colors+depths.

– fragment shader executed once per fragment

– E.g., Each sample holds a 
2-bit index into a storage of up to
four colors per pixel

Tomas Akenine-Mőller © 200324

16x CSAA



Tomas Akenine-Mőller © 2003

The A-buffer
Multisampling technique
l Takes >1 samples per pixel, and shares 

compuations between samples inside a 
pixel 

l Supersampling does not share 
computations (depth, fragment shading)

l Examples:
– Lighting may be computed once per pixel
– Texturing may be computed once per pixel

l Strength: anti-aliasing edges (and 
properly handling transparency)

25



Tomas Akenine-Mőller © 2003

The A-buffer
l To deal better with edges:                     

use a coverage mask per pixel
l Coverage mask, depth, & color                    

make up a fragment
l During rendering fragments are 

discarded when possible (depth test)
l When all polygons have been rendered, 

the fragments are merged into a visible 
color
– Allows for sorting transparent surfaces as well
– But costs memory26



Tomas Akenine-Mőller © 2003

Another multisampling techniqe
Quincunx

l Generate 2 samples per pixel at the same time
l w1=0.5, w2=0.125, w3=0.125, w4=0.125, 
w5=0.125  (2D tent filter)

l All samples gives the same effect on the image 
(mid pixel = 0.5, corner pixels = 4*0.125=0.5)

l Was available on NVIDIA GeForce3 and up27



Tomas Akenine-Mőller © 2003

Yet another scheme:
FLIPQUAD multisampling
l Recap, RGSS:

– One sample per row 
and column

l Combine good stuff                                  
from RGSS and Quincunx

l Weights: 0.25 per sample
l Performs better than                                                

Quincunx

Demo

28



ATI Radeon 2900

l Examples of 2 filter modes
Tomas Akenine-Mőller © 2003

Fr
om

 w
w

w
.p

cp
er

.c
om

29



What is important:
l Aliasing in 3 different areas:

– Pixels, textures, time
l Filter: box, tent, sinc
l Different sampling schemes

– Quincunx, Grid, Rotated Grid Super Sampling (RGSS), 
checker, 8-rooks

l Jittering: 
– 1) How it works. 2) Trades undersampling artifacts for noise 

(typically prefered by humans)
l Supersampling, multisampling, (coverage sampling)
l Quincunx – pattern and weights

– Good because costs only 2 samples/pixel on average, but 
uses 5 samples per pixel

30



More on filtering 
theory and practice
l Especially important for pixels and 

filtering of textures
l More about texturing in next lecture

31


