Screen-space Reflections
What about cubemaps?
Sometimes work well
But no self reflection
Precomputed

only static reflections
Planar Reflections

- Render with reflected camera?
- Perfect reflections
- Scales bad with scene complexity
- Scales bad with many reflective surfaces
- Only flat surfaces
- Is there another way?
With cube map, reflections out of sync
Rerender Solution

- Render again from reflected viewpoint
- Complexity scales with scene
- Normally for perfectly planar surfaces
What can be exploited in scene?
Reuse screen-space data!
Basic SSR Algorithm - Mirror Reflection

- For each fragment
 - Compute reflection ray
 - Trace along ray direction (using depth buffer)
 - Use color of intersection point as reflection color
Shaded scene + Normals + Depth

Shaded scene with SSR

SSR
Linear Raymarch

Goal: Find intersection point

- At each step, check depth value
- Quality depends on step size
- Can be refined
SSR in Frostbite

- Tile classification
- Ray allocation
- Cheap raytracing
- HQ raytracing
- Color resolve
- Temporal filter
SSR in Frostbite

Tile classification

Ray allocation

Cheap raytracing

HQ raytracing

Color resolve

Temporal filter
Rough Surfaces

Use cheap rays
Smooth Surfaces

Use expensive rays
Hierarchical ray trace (Expensive)
Generate Depth Mip-Map

- Use min values instead of average
Start at first mip level - OK!
Continue at next mip level
Intersection at 3 mip level!
Check same pixel with mip level 2
No intersection at mip level 2
Continue with mip level 3

Intersection!
Check mip level 2

Still Intersection!
Intersection at mip level 1 ➔ DONE
What's the difference?

- Cannot miss tiny geometry
- Mip-map hierarchy
- More expensive
Reflection direction to use

Importance Sampling:

- BRDF
- Halton sequence
SSR in Frostbite

- Tile classification
 - Ray allocation
 - Cheap raytracing
 - HQ raytracing
 - Color resolve
 - Temporal filter
Neighbor Rays

- Nearby pixels likely to give similar reflection
- Reuse nearby intersection points
- Need to weight accordingly
Weighing Neighbors

- Green in formula is important part
- "Variance reduction"
- For each nearby hit
 - weight = $f_s(h) / p_k$
 - contribution = color(hit) * weight
- FG is precomputed BRDF factor
- They use $N = 4$
1 ray/pixel in half-resolution
No ray reuse
1 ray/pixel in half-resolution
4 neighbor reuse = 4 resolve samples
SSR in Frostbite

Tile classification

Ray allocation

Cheap raytracing

HQ raytracing

Color resolve

Temporal filter
Temporal Reprojection (filtering)

Reproject last frame into current frame

\[\vec{x}_t = P_t V_t (P_{t-1} V_{t-1})^{-1} \vec{x}_{t-1} \]
Temporal Reprojection (filtering)

- Problems: smeared reflections when moving camera
- Reproject ray intersection location instead of reflected surface location
1 ray/pixel in half-resolution, 4 resolve samples
Without temporal filter
1 ray/pixel in half-resolution, 4 resolve samples
With temporal filter
Sparse Ray Tracing

- Decouple ray tracing from color resolve
- Only do ray tracing in half resolution
- Promote color resolving to full resolution
- They still use four nearby in resolve
Temporal filter +
1 ray/pixel in half resolution +
4 resolve samples in **half** resolution
Temporal filter +
1 ray/pixel in half resolution +
4 resolve samples in **full** resolution
Filtered Importance Sampling

- Pretend rays are cones
- Wider intersection point
Filtered Importance Sampling

- Use mipmapped values in resolve
- Mip level depend on
 - Roughness
 - Distance to hit
- Mix with monte carlo approach
Previous result (Monte carlo)
Mixed with cone sampling
Performance

- **PS4, 1600x900**
- **Benchmark parameters**
 - Ray trace once per half pixel
 - Use four nearby rays in color resolve
 - <20% HQ rays
- **Takes 2.19 ms**
 - Most expensive step: 0.8 ms in color resolving
However, screen space reflection is not perfect
Edge Cutoff
Edge Fading
Summary

- Limited data, make the best of it
- Many tricks and optimisations
- Hiding some artifacts, can achieve useful result
Video
Bonus Slides!
Crysis 2 (introduced technique)
Crysis 2 (introduced technique)