
Database Tutorial 6: XML, DTDs, XPath, XQuery

2015-01-27

1 Repetition

1.1 XML

• Tree structure

• Opening and closing Tags

• Case-sensitive

• Elements, Attributes and Text elements

Example:

<?xml version="1.0" standalone="yes" ?>

<!-- put the DTD here -->

<Hogwarts>

<Rooms>

<Room name="The_Dungeon" nrSeats="34" />

<Room name="The_Cabin" nrSeats="163" />

</Rooms>

<Teachers>

<Teacher name="Snape" room="The_Dungeon" >

<Title>Professor</Title>

</Teacher>

<Teacher name="Hagrid" room="The_Cabin" />

</Teachers>

<Courses>

<Course name="Potioncraft" teacher="Snape" nrStudents="28">

<Class day="Monday" hour="10" />

</Course>

<Course name="Handling_of_Wild_Creatures" teacher="Hagrid">

<Class day="Saturday" hour="13" />

<Class day="Thursday" hour="7" />

</Course>

</Courses>

</Hogwarts>

1.2 DTD

• Rules for Elements, Attributes (and Entities).

1

• Keys and references (ID and IDREF)

• Choice (—) and Cardinalities (? at most one, + one ore more, * zero or more)

element ::= ’<!ELEMENT’ Name content ’>’

content ::= ’EMPTY’ | ’ANY’ | #PCDATA | children

children::= children ’+’ | children ’*’ | children ’?’ | children ’|’ children | ...

attlist ::= ’<!ATTLIST’ Name (Name type default)* ’>’

type ::= ’CDATA’ | ’ID’ | ’IDREF’ | ...

default ::= ’#REQUIRED’ | ’#IMPLIED’ | (’#FIXED’)? value

Example:

<!DOCTYPE Hogwarts [

<!ELEMENT Hogwarts (Rooms, Teachers, Courses) >

<!ELEMENT Rooms (Room*) >

<!ELEMENT Room EMPTY >

<!ATTLIST Room

name ID #REQUIRED

nrSeats CDATA #IMPLIED >

<!ELEMENT Teachers (Teacher*) >

<!ELEMENT Teacher (Title*) >

<!ELEMENT Title (#PCDATA) >

<!ATTLIST Teacher

name ID #REQUIRED

room IDREF #REQUIRED >

<!ELEMENT Courses (Course*) >

<!ELEMENT Course (Class*) >

<!ATTLIST Course

name ID #REQUIRED

teacher IDREF #REQUIRED

nrStudents CDATA #IMPLIED >

<!ELEMENT Class EMPTY >

<!ATTLIST Class

day CDATA #REQUIRED

hour CDATA #REQUIRED >

]>

1.3 XPath

Symbol Meaning
/ Root
. Current Element
.. Parent Element
//* All elements anywhere
elem1/elem2 Path
[test] Condition (to filter)
@Att Attribute

Example:

Page 2

Find all courses that have at least 20 students:

//Course[@nrStudents >= 20]

List all professors at the school:

//Teacher[Title = "Professor"]

Find all rooms that are used on Mondays:

//Room[@name = //Teacher[@name = //Course[Class/@day = "Monday"]/@teacher]/@room]

1.4 XQuery

• Basic structure of an XQuery expression is:

– FOR-LET-WHERE-ORDER BY-RETURN.

– Called FLWOR expressions (pronounce as flower).

• A FLWOR expression can have any number of FOR (iterate) and LET (assign) clauses, possibly mixed,
followed by possibly a WHERE clause and possibly an ORDER BY clause.

• Only required part is RETURN.

Example:

for $class in //Class[@day="Monday"]

for $teacher in $class/../@teacher

for $room in data(//Teacher[@name=$teacher]/@room)

return <room>{$room}</room>

2 Exercises

2.1 Exam HT2016

1. (8 points)
A binary tree is a tree whose every node either branches to two binary trees or is a leaf, i.e. contains a
value. Here is an example of a binary tree:

(a) (3 points) Design a DTD for representing binary trees and nothing but binary trees. The branching
nodes should not carry any information, whereas every leaf should carry a value that can be any
string (#PCDATA).

Solution:

Page 3

<!DOCTYPE BT [

<!ELEMENT BT ((BT,BT) | Leaf)>

<!ELEMENT Leaf (#PCDATA)>

]>

(b) (3 points) Show an XML element representing the above example tree, and which is valid according
to your DTD.

Solution:

<BT>

<BT><Leaf>1</Leaf></BT>

<BT>

<BT>

<BT><Leaf>2</Leaf></BT>

<BT><Leaf>3</Leaf></BT>

</BT>

<BT><Leaf>4</Leaf></BT>

</BT>

</BT>

(c) (2 points) Write an XPath query that returns all leaf elements of a binary tree. For the above
example, it should return 1,2,3,4 (without any XML tags).

Solution:

//Leaf/*

2.2 Exam HT2014

1. (8 points)

<Question7>

<Applicants>

<Applicant name="Andersson" appNum="a1" />

<Applicant name="Jonsson" appNum="a2" />

<Applicant name="Larsson" appNum="a3" />

</Applicants>

<Choices>

<Choice applicant="a1" code="MPSOF" choiceNum="1" meritScore="750" />

<Choice applicant="a1" code="MPALG" choiceNum="2" meritScore="750" />

<Choice applicant="a1" code="MPCSN" choiceNum="3" meritScore="800" />

<Choice applicant="a2" code="MPALG" choiceNum="1" meritScore="700" />

<Choice applicant="a3" code="MPCSN" choiceNum="1" meritScore="850" />

<Choice applicant="a3" code="MPALG" choiceNum="2" meritScore="850" />

</Choices>

</Question7>

(a) (2 points) Write a Document Type Definition (DTD) for the XML that is given above

Solution:

Page 4

<!DOCTYPE Question7 [

<!ELEMENT Question7 (Applicants, Choices)>

<!ELEMENT Applicants (Applicant*)>

<!ELEMENT Applicant EMPTY>

<!ATTLIST Applicant

name CDATA #REQUIRED

appNum ID #REQUIRED >

<!ELEMENT Choices (Choice*)>

<!ELEMENT Choice EMPTY>

<!ATTLIST Choice

applicant IDREF #REQUIRED

code CDATA #REQUIRED

choiceNum CDATA #REQUIRED

meritScore CDATA #REQUIRED>

]>

(b) (1 point) Write an XPath expression that finds Choice elements where the choice number is 1 and
the merit score is greater than 800.

Solution:

//Choice[@choiceNum="1" and @meritScore>800]

(c) (2 points) The flexibility of XML enables us to nest elements in a more natural way than in the
example shown at the top of this question. Write a piece of XML that contains the same informa-
tion as in the example shown above, but which uses nesting, and avoids duplication of applicant
identifiers.

Solution:

<Question7>

<Applicant appNum="a1" name="Andersson">

<Choice meritScore="750" choiceNum="1" code="MPSOF"/>

<Choice meritScore="750" choiceNum="2" code="MPALG"/>

<Choice meritScore="800" choiceNum="3" code="MPCSN"/>

</Applicant>

<Applicant appNum="a2" name="Jonsson">

<Choice meritScore="700" choiceNum="1" code="MPALG"/>

</Applicant>

<Applicant appNum="a3" name="Larsson">

<Choice meritScore="850" choiceNum="1" code="MPCSN"/>

<Choice meritScore="850" choiceNum="2" code="MPALG"/>

</Applicant>

</Question7>

(d) (3 points) Assuming that the XML shown above is in file exam.xml, write an XQuery expression
that constructs your solution to part (c).

Solution:

<Question7>

{

let $d := doc("exam.xml")

Page 5

for $a in $d//Applicant

let $choices := (

for $c in $d//Choices/Choice[@applicant = $a/@appNum]

return <Choice code="{$c/@code}"

choiceNum="{$c/@choiceNum}"

meritScore="{$c/@meritScore}" />)

return <Applicant name="{$a/@name}" appNum="{$a/@appNum}" >

{$choices}

</Applicant>

}

</Question7>

Page 6

