
Database Applications

JDBC
SQL Injection

Course Objectives

Design

Construction

Applications
Usage

JDBC

• JDBC = Java DataBase Connectivity
• JDBC is Java’s call-level interface to SQL

DBMS’s.
– A library with operations that give full access

to relational databases, including:
• Creating, dropping or altering tables, views, etc.
• Modifying data in tables
• Querying tables for information
• …

JDBC Objects
• JDBC is a library that provides a set of classes

and methods for the user:
– DriverManager

• Handles connections to different DBMS. Implementation
specific.

– Connection
• Represents a connection to a specific database.

– Statement, PreparedStatement
• Represents an SQL statement or query.

– ResultSet
• Manages the result of an SQL query.

Getting connected

– Will also be done for you on the lab, except username
and password.

private static final String HOST =
”ate.ita.chalmers.se”;

private static final String DB = ”exampledb”;
private static final String USER = username;
private static final String PWD = password;

Class.forName("org.postgresql.Driver");

Properties props = new Properties();
props.setProperty("user",USERNAME);
props.setProperty("password",PASSWORD);

Connection myCon =
DriverManager.getConnection(”jdbc:postgresql://” +
HOST + ”/” + DB, props);

Statements

• A Statement object represents an SQL
statement or query, including schema-
altering statements.

• A Statement object represents one
statement at a time, but may be reused.

Statement myStmt = myCon.createStatement();

A statement is associated
with a particular connection

Using statements
• Statement objects have two fundamental

methods:
– ResultSet executeQuery(String query)

• Given a string, which must be a query, run that
query against the database and return the resulting
set of rows.

– int executeUpdate(String update)
• Given a string, which must be a non-query, run

that update against the database.
• Note that a JDBC update is not an SQL update,

but rather an SQL modification (which could be an
update).

Example:

String myInsertion =
”INSERT INTO Courses VALUES (’TDA357’, ’Databases’)”;

Statement myStmt = myCon.createStatement();

myStmt.executeUpdate(myInsertion);

Has return type int
(the number of rows
that were changed)

Exceptions in JDBC
• Just about anything can go wrong!

– Syntactic errors in SQL code.
– Trying to run a non-query using executeQuery.
– Permission errors.
– …

• Catch your exceptions!
try {

// database stuff goes in here
} catch (SQLException e) { … }

Executing queries

• The method executeQuery will run a
query against the database, producing a
set of rows as its result.

• A ResultSet object represents an interface
to this resulting set of rows.
– Note that the ResultSet object is not the set

of rows itself – it just allows us to access the
set of rows that is the result of a query on
some Statement object.

ResultSet
• A ResultSet holds result of an SQL query.

– boolean next()
• Advances the ”cursor” to the next row in the set, returning

false if no such rows exists, true otherwise.
– X getX(i)

• X is some type, and i is a column number (index from 1).
• Example:

returns the integer value of the first column of the current
row in the result set rs.

rs.getInt(1)

ResultSet is not a result set!
• Remember a ResultSet is more like a

cursor than an actual set – it is an
interface to the rows in the actual result
set.

• A Statement object can have one result
at a time. If the same Statement is used
again for a new query, any previous
ResultSet for that Statement will no
longer work!

Quiz!
What will the result be?
Statement myStmt = myCon.createStatement();
ResultSet rs =
myStmt.executeQuery(”SELECT * FROM Courses”);

while (rs.next()) {
String code = rs.getString(1);
String name = rs.getString(2);
System.out.println(name + ” (” + code + ”)”);
ResultSet rs2 = myStmt.executeQuery(
”SELECT teacher FROM GivenCourses ” +
”WHERE course = ’” + code + ”’”);

while (rs2.next())
System.out.println(” ” + rs2.getString(1));

}
Due to overuse of the same Statement, only the first
course will be printed, with teachers. After the second
query is executed, rs.next() will return false.

☠
SQLi!

Two approaches
• If we need information from more than one table,

there are two different programming patterns for
doing so:
– Joining tables in SQL

• Join all the tables that we want the information from in a
single query (like we would in SQL), get one large result set
back, and use a ResultSet to iterate through this data.

– Use nested queries in Java
• Do a simple query on a single table, iterate through the

result, and for each resulting row issue a new query to the
database (like in the example on the previous page, but
without the error).

Example: Joining in SQL
Statement myStmt = myCon.createStatement();
ResultSet rs =
myStmt.executeQuery(
”SELECT code, name, period, teacher ” +
”FROM Courses, GivenCourses ” +
”WHERE code = course ” +
”ORDER BY code, period”);

String currentCourse, course;
while (rs.next()) {
course = rs.getString(1);
if (!course.equals(currentCourse))
System.out.println(rs.getString(2));

System.out.println(” Period ” + rs.getInt(3) +
”: ” + rs.getString(4));

currentCourse = course;
}

Compare with previous row
to see if this is a new course.

If it is, print its name.

Example: Using nested queries in Java
Statement cStmt = myCon.createStatement();
Statement gcStmt = myCon.createStatement();
ResultSet courses = cStmt.executeQuery(

”SELECT code, name ” +
”FROM Courses ” +
”ORDER BY code”);

while (courses.next()) {
String course = courses.getString(1);
System.out.println(courses.getString(2));
ResultSet gcourses = gcStmt.executeQuery(

”SELECT period, teacher ” +
”FROM GivenCourses
”WHERE course = ’” + course + ”’ ” +
”ORDER BY period”);

while (gcourses.next()) {
System.out.println(” Period ” + gcourses.getInt(1) +

”: ” + gcourses.getString(2));
}

}

Find the given
courses for each

course
separately with
an inner query.

☠
SQLi!

Comparison
• Joining in SQL

– Requires only a single query.
– Everything done in the DBMS, which is good at

optimising.
• Nested queries

– Many queries to send to the DBMS
• communications/network overhead
• compile and optimise many similar queries

– Logic done in Java, which means optimisations must
be done by hand.

– Limits what can be done by the DBMS optimiser.

Push complexity to DBMS

• CPUs are fast (nanoseconds per instruction)
• Network communication is slow (milliseconds per packet)

– Millions of times slower than a CPU computation!!

• Place your complexity on the DBMS if possible
– Avoid costly round-trips over network!

Imagine a database Mars/Earth
Round-trip Earth-Mars: ± 25 minutes

SQL INJECTION
After the break:

Dynamically generated queries

• Goal: pass user-input to DBMS as part of the query
– E.g. asking for information on a certain user

• Good assumption: User are attackers
– Always sanitize your inputs!

• SQL Injection (SQLi) is the most common
vulnerability on the Web today

SELECT * FROM UserInfo WHERE username = <user input>;

https://www.owasp.org/index.php/Top_10_2013-Top_10

Ethical Hacking

Never poke around with security on
systems without explicit permission
(Consider that you may be dealing with critical systems
such as nuclear powerplants or hospital equipment)

Dynamically generated queries:
Naïve approach

• String concatenation will result in SQLi
Username = abc

SELECT * FROM UserInfo WHERE
username = ‘abc’

Username = x‘ OR ’1’=‘1
SELECT * FROM UserInfo WHERE

username = ‘x‘ OR ’1’=‘1’
Username = x’ UNION (SELECT uid, password, ‘x’, ‘y’
FROM UserPasswords) --

SELECT * FROM UserInfo WHERE username = ‘x’
UNION (SELECT uid, password, ‘x’, ‘y’

FROM UserPasswords) --’

☠
SQLi!

myStmt.executeQuery(”SELECT * FROM UserInfo
WHERE username = ’”+ username +”’”);

SQL Injection: sqlmap
• SQLmap

– “automatic SQL injection and database takeover tool”
– http://sqlmap.org/

• USE ONLY WITH PERMISSION!
• Automatically discovers SQL vulnerabilities,

determines best SQLi attack and extracts entire
database

• Prevent SQL Injection Vulnerabilities in your
applications
– This tool is used in the wild, don’t be a victim of it

• We can parametrize data in a statement.
– Data that could differ is replaced with ? in the

statement text.
– ? parameters can be instantiated using

functions setX(int index, X value).

PreparedStatement myPstmt =
myCon.prepareStatement(
”INSERT INTO Courses VALUES (?,?)”);

myPstmt.setString(1, ”TDA356”);
myPstmt.setString(2, ”Databases”);

PreparedStatement

PreparedStatement is superior:
Reason 1 – Security

• PreparedStatements are designed to prevent
SQL injections
– The query is separated from the attacker input by

using ’?’ placeholders
– They know how to safely encode parameters are

Strings, Integers and others
– Because of this strict separation and encoding,

attackers can not inject into the SQL query
– But beware! PreparedStatement used with a

concatenated string containing attacker input, will not
protect against SQLi

PreparedStatement is superior:
Reason 2 – Performance

• normal/prepared: Use Statement/PreparedStatement
• reuse/noreuse: create new Statement/PreparedStatement object per new query
• plain/parm: performed query uses a user-determined parameter

Almost twice as fast!

PreparedStatement is superior:
Reason 3 – easier to read/write

• Because of the placeholders, PreparedStatements are
easier to both read and write
– No messing with brackets and escaping characters

myStmt.executeQuery(”SELECT * FROM UserInfo
WHERE username = ’”+ username +”’); ☠

SQLi!

conn.prepareStatement(”SELECT * FROM UserInfo
WHERE username = ?”);

Missing “!!!

Summary JDBC
• DriverManager

– Register drivers, create connections.
• Connection

– Create statements or prepared statements.
– Close when finished.

• Statement
– Execute queries or modifications.

• PreparedStatement
– Execute a particular query or modification, possibly

parametrized. Good practice for security reasons.
• ResultSet

– Iterate through the result set of a query.

Play with SQLi

• http://sql.haxx.be
– Only available for another week or so

• http://redtiger.labs.overthewire.org/
– All SQL injection challenges

• http://overthewire.org/wargames/natas/
– All web challenges, with SQLi in later levels

• Chalmers CTF team SQLi workshop
– https://chalmersctf.se/

