CHALMERS UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Tuesday 17 December 2013, 14:00-18:00

Solutions

Updated 2014-11-19

Question 1. a) (Here is one suggestion. Several other designs are also accepted. For example, modelling 'Teacher', 'Parent' and 'Child' as subclasses of 'Person'.)

b) Nurseries(name)

Sections(nursery, name)
nursery \rightarrow Nurseries.name
Teachers(personNumber, name, nursery, section)
(nursery, section) \rightarrow Sections.(nursery, name)
Parents(personNumber, name, phoneNumber)
Children(personNumber, name, startDate)
EnrolledChildren(personNumber, nursery, section)
personNumber \rightarrow Children.personNumber
(nursery, section) \rightarrow Sections.(nursery, name)
AppliesTo(child, nursery, choice)
child \rightarrow Children.personNumber
nursery \rightarrow Nurseries.name
ParentOf(parent, child)
parent \rightarrow Parents.personNumber
child \rightarrow Children.personNumber

Question 2. a) In addition to the FDs listed in the question, we also have:
11 p

$$
\begin{array}{ll}
\text { AB }-> & C \\
\text { AC } & \text { B } \\
\text { AD -> } & \text { B } \\
\text { AD } & \text { C } \\
\text { BD }-> & C \\
\text { ABD } & \text { C } \\
\text { ACD }-> & B \\
\text { BCD } & \text { A }
\end{array}
$$

Superkeys: AD, BD, ABD, ACD, BCD, ABCD
Keys: AD, BD
b) i) FDs violating $\mathrm{BCNF}: \mathrm{A}->\mathrm{B}, \mathrm{B}->\mathrm{C}, \mathrm{A}->\mathrm{C}, \mathrm{AB}->\mathrm{C}, \mathrm{AC}->\mathrm{B}$
ii) FDs violating 3NF: $\mathrm{B}->\mathrm{C}, \mathrm{A}->\mathrm{C}, \mathrm{AB}->\mathrm{C}$
c) Decompose R on $A->B$
$\{A\}+=\{A B C\}$

$$
\begin{aligned}
& \text { R1 (_A,B,C) } \\
& \text { R2(_A, D) } \\
& \quad \text { A } \rightarrow \text { R1.A }
\end{aligned}
$$

Decompose R1 on B->C
$\{B\}+=\{B C\}$

$$
\begin{aligned}
& \text { R11 (_B }, \mathrm{C}) \\
& \text { R12(_A B) } \\
& \quad \text { B->R11.B }
\end{aligned}
$$

Update reference for R2: A -> R12.A
d) $(\mathrm{a} 1, \mathrm{~b} 2, \mathrm{c} 2, \mathrm{~d} 2)$
(a2, b1, c1, d3)
(a2, b3, c3, d1)

Question 3. a) Offices(city, supplement)

$$
\begin{aligned}
& \text { Departments }(\text { city, dname, departmentHead }) \\
& \quad \text { city } \rightarrow \text { Offices.city } \\
& \text { departmentHead } \rightarrow \text { Employees.empId } \\
& \text { Employees }(\text { empId, name, salary, dept, city }) \\
& (\text { city, dept }) \rightarrow \text { Departments.(city, dname })
\end{aligned}
$$

```
CREATE TABLE Offices (
    city VARCHAR(20) PRIMARY KEY,
    supplement INT DEFAULT O,
);
CREATE TABLE Departments (
    city VARCHAR(20),
    dname VARCHAR(20),
    departmentHead CHAR(10),
    PRIMARY KEY (city, dname),
    FOREIGN KEY (city) REFERENCES Offices(city)
    FOREIGN KEY (departmentHead) REFERENCES Employees(empId)
        ON DELETE SET NULL
        ON UPDATE CASCADE,
);
CREATE TABLE Employees (
    empId CHAR(10) PRIMARY KEY,
    name VARCHAR(30),
    salary INT,
    dept VARCHAR(20),
    city VARCHAR(20),
    FOREIGN KEY (city, dept) REFERENCES Departments(city, dname)
);
```

Several of the solutions we saw used the policy "CASCADE" instead of "SET NULL" for the foreign key constraint on attribute departmentHead in table Departments. Consider what would be the consequences of this.
The solution shown above would give an error if executed, due to the forward references from the Departments table definition to the Employees table, which hasn't been created yet. This complication was ignored when marking the exam. In practice, we could omit this foreign key constraint when creating the Departments table, and then add this constraint after the Employees table has been created. This can be done using the ALTER TABLE statement, e.g.

ALTER TABLE Departments ADD CONSTRAINT departmentREFemployee FOREIGN KEY (departmentHead) REFERENCES Employees (empId) INITIALLY DEFERRED DEFERRABLE;

For more information on this, see the section on "Deferring Constraint Checking" on the website for the course textbook:
http://infolab.stanford.edu/~ullman/fcdb/oracle/or-triggers.html
b) CREATE ASSERTION HeadOfOwnDept CHECK (NOT EXISTS (

SELECT departmentHead
FROM Departments JOIN Employees ON departmentHead = empId WHERE dname <> dept OR Departments.city <> Employees.city))
c) CREATE PROCEDURE Merge (

IN city1 VARCHAR(20),
IN dept1 VARCHAR(20),
IN city2 VARCHAR(20),
IN dept2 VARCHAR(20)
)
BEGIN
IF (SELECT COUNT (empId)
FROM Employees
WHERE city = city1 AND dept = dept1) >
(SELECT COUNT (empId)
FROM Employees WHERE city $=$ city2 AND dept $=$ dept2)
THEN
UPDATE Departments
SET departmentHead =
(SELECT departmentHead
FROM Departments
WHERE city = city1 AND dname = dept1)
WHERE city $=$ city2 AND dept $=\operatorname{dept2}$;
ENDIF;
UPDATE Employees
SET city = city2,
dept $=$ dept2
WHERE city = city1 AND dept = dept1;
DELETE FROM Departments WHERE city = city1 AND dname = dept1; END;

Question 4. a) $\tau_{\text {name }}\left(\pi_{\text {empId,name,salary }+ \text { supplement }}(\right.$ Employees \bowtie Offices $\left.)\right)$
6 p
b) If we assume that all sales departments have at least one employee:

$$
\gamma_{c i t y, A V G(\text { salary }) \rightarrow \text { avgSalary }}\left(\sigma_{\text {dept }=" \text { sales" }}(\text { Employees })\right)
$$

If there can be sales departments with no employees, we might want to include those in the result, with ' 0 ' as the average. This can be done by forming the union of the relational algebra expression given above with:

$$
\pi_{\text {city }, 0}\left(\pi_{\text {city }}\left(\sigma_{\text {dname="sales" }}(\text { Departments })\right)-\pi_{\text {city }}\left(\sigma_{\text {dept=" sales" }}(\text { Employees })\right)\right)
$$

Question 5. a) SELECT empId, name, salary + supplement AS totalSalary
10 p
FROM Employees NATURAL JOIN Offices
ORDER BY name
b) i) SELECT dname

FROM Departments
WHERE city = "London"
AND dname NOT IN
$\begin{array}{ll}\text { SELECT } & \text { dname } \\ \text { FROM } & \text { Departments } \\ \text { WHERE } & \text { city = "Paris") }\end{array}$
ii) (SELECT dname

FROM Departments
WHERE city = "London")
EXCEPT
(SELECT dname
FROM Departments
WHERE city = "Paris")
c) CREATE VIEW SalaryBill AS

SELECT city, SUM(salary + supplement) AS amount
FROM Employees NATURAL JOIN Offices
GROUP BY city

Question 6. a) The result printed by transaction T 1 could be different if transaction T 1 and T 3 are run concurrently. Good answers will discuss the concept of phantoms (see Example 6.47 in the course textbook) and the schedule of operations that causes different results to be printed.
b) i) task 1:2
task 2: 30
ii) task 1: 4
task 2: 6
iii) It would be better to have an index on city (cost: 420 vs. 480).

Question 7. a) Corrected DTD is:
7 p

```
<!DOCTYPE A [
<!ELEMENT A (B*) >
<!ELEMENT B (C) >
<!ELEMENT C (#PCDATA) >
<!ATTLIST A
    a1 CDATA #REQUIRED >
<!ATTLIST B
    b1 CDATA #REQUIRED
    b2 CDATA #IMPLIED >
<!ATTLIST C
    c1 CDATA #REQUIRED >
]>
```

b) i) <B b1="B1" b2="15">
<C c1="red">first</C>

<B b1="B4" b2="35">
<C c1="red">fourth</C>

ii) <C c1="blue">third</C>
<C c1="red">fourth</C>
c) <Result>
\{
for $\$ \mathrm{~b}$ in (doc("exam.xml")//B)
order by $\$ \mathrm{~b} / \mathrm{C} / @ c 1$
return <C c1="\{\$b/C/@c1\}"><B b1="\{\$b/@b1\}" /></C>
\}
</Result>

