CHALMERS UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering
Examination in Databases, TDA357/DIT620
Thursday 16 April 2009, 08:30-12:30

Solutions

Updated 2011-12-12

Question 1. a) E-R diagram:
10 p

b) Items (modelName, colour $)$

Packages(modelName, colour, number, length, width, height, weight) (modelName, colour $) \rightarrow$ Items. (modelName, colour $)$

Stores(name)
LocatedAt (modelName, colour, store, section, shelf)
(modelName, colour) \rightarrow Items.(modelName, colour)
store \rightarrow Stores.name
Purchases(purchaseId, date, atStore) atStore \rightarrow Stores.name

PurchaseItems(purchaseId, modelName, colour, quantity) purchaseId \rightarrow Purchases.purchaseId (modelName, colour) \rightarrow Items.(modelName, colour)

CardPurchases(purchaseId, cardNumber, cardType) purchaseId \rightarrow Purchases.purchaseId

Question 2. a) i) After considering the closures of all subsets of attributes, we find the following additional non-trivial FDs:

$$
\begin{aligned}
& A C \rightarrow D \\
& B C \rightarrow A \\
& B C \rightarrow D \\
& A B C \rightarrow D \\
& B C D \rightarrow A
\end{aligned}
$$

Superkeys are: BC, $\mathrm{ABC}, \mathrm{BCD}, \mathrm{ABCD}$. There is one keys: BC.
FDs that violate BCNF:

$$
\begin{aligned}
& B D \rightarrow A \\
& C \rightarrow D \\
& A C \rightarrow D
\end{aligned}
$$

ii) - By first decomposing on $B D \rightarrow A$, we get $R_{1}(A, B, D)$ and $R_{2}(B, C, D)$. R_{2} is not in BCNF, so we must decompose further.

- By first decomposing on $C \rightarrow D$, we get $R_{1}(C, D)$ and $R_{2}(A, B, C)$.
b) MVDs:
course \rightarrow teacher
course \rightarrow author
(Kemp,Kleinberg,TIN092) must also be added.

teacher	course
Kemp	TDA357
Broberg	TDA357
Holmström	TIN092
Kemp	TIN092

author	course
Garcia-Molina	TDA357
Ullman	TDA357
Widom	TDA357
Tardos	TIN092
Kleinberg	TIN092

Question 3. a) i) $\pi_{\text {name, city }}\left(\sigma_{\text {salary }>30000 A N D b r a n c h=\text { number }}(\right.$ Employees \times Branches $)$)
5 p
ii) $\pi_{\text {name,city }}\left(\sigma_{\text {salary }>30000}\right.$ (Employees) $\bowtie_{\text {branch }=\text { number }}$ Branches $)$
b) $\tau_{\text {avSal }}\left(\gamma_{\text {branch }, A V G(\text { salary }) \rightarrow \text { avSal }}(\right.$ Employees $)$

Question 4. a) SELECT SUM (quantity)
8 p
FROM Sales
WHERE item='p001' AND year=2008 AND month<7
b) SELECT N.item

FROM Sales N, Sales D
WHERE N.item = D.item
N.country = 'Norway'

AND D.country = 'Denmark'
AND N.Year $=2009$
AND D.Year $=2009$
AND N.Month $=3$
AND D.Month $=3$
AND N.quantity > D.quantity
c) CREATE VIEW V AS

SELECT item, SUM(quantity) AS quantity, country, year FROM Sales
GROUP BY item, country, year
d) SELECT DISTINCT C.country

FROM Sales C
WHERE NOT EXISTS (
SELECT *
FROM Sales J, Sales D
WHERE J.item = 'p001'
AND D.item = 'p001'
AND J.country = C.country
AND D.country = C.country
AND J.quantity <= D.quantity)

```
Question 5. a) i) \(\operatorname{Papers}(r e f N o\), title \()\)
    10 p
Paper Authors(ref No, email, name, institute)
            refNo \(\rightarrow \overline{\text { Papers }}\) ref No
Reviewers(refNo, email)
    refNo \(\rightarrow\) Papers.ref No
    email \(\rightarrow\) ProgrammeCommittee.email
ProgrammeCommittee(email, name, institute)
CREATE TABLE Papers (
    refNo INT PRIMARY KEY,
    title VARCHAR(100)
);
CREATE TABLE PaperAuthors (
    refNo INT,
    email VARCHAR(50),
    name VARCHAR(30),
    institute VARCHAR(30),
    PRIMARY KEY (refNo, email)
    FOREIGN KEY refNo REFERENCES Papers (refNo)
        ON DELETE CASCADE
        ON UPDATE CASCADE
\};
CREATE TABLE ProgrammeCommittee (
        email VARCHAR(50) PRIMARY KEY,
        institute VARCHAR(30)
);
CREATE TABLE Reviewers (
        refNo INT,
        email VARCHAR(50),
        PRIMARY KEY (refNo, email)
        FOREIGN KEY refNo REFERENCES Papers (refNo)
            ON DELETE CASCADE
                ON UPDATE CASCADE
        FOREIGN KEY email REFERENCES ProgrammeCommittee(email)
                ON DELETE CASCADE
                ON UPDATE CASCADE
);
```

ii) Here are some suggestions, but some other policies will be accepted if these are well motivated.
If a paper's reference number is updated, then we want to propagate that change to the referencing relations. If a paper is deleted from the Papers relation, then information about the paper's authors should be deleted from the PaperAuthors relation, and records about reviewers assigned to review that paper should be deleted from the Reviewers relation.
If a programme committee member's e-mail address is updated, then we want to propagate that change to the Reviewers relation. If a programme committee member is deleted from the database, then we want all records about that programme committee member to be deleted from the Reviewers relation.
b) CREATE ASSERTION NotReviewingOwnPaper CHECK
(NOT EXISTS (
SELECT *
FROM Reviewers R, PaperAuthors A
WHERE A.refNo = R.refNo
AND A.email = R.email
));
c) CREATE VIEW Conflicts AS

SELECT refNo, M.email as email
FROM ProgrammeCommittee M, PaperAuthors A
WHERE M.institute = A.institute

Question 6. a) There are 6 possible orderings of transactions $\mathrm{T} 1, \mathrm{~T} 2$ and T 3 , and all result in a balance of 400 in both accounts. In those cases where T3 executes before T2, the value printed is 1000 . In other cases, the value printed is 800 .
b) All of the outcomes in part (a) are still possible. Additionally, T2 may see data written by T1 as T1 writes it. So T2 can get value 500 or 600 into Y.

Question 7. a) See lecture slides for "Lecture 12, Indexes" at
6 p http://www.cs.chalmers.se/Cs/Grundutb/Kurser/dbas/DbasHT2008/index.cgi/Lecture_Notes (in particular: page 3, slide 4; page 4 , slide 1)
b) Various answers will be accepted. For example, consider the effect of using an index if the relation is so small that it fits in a single disc block. Also, consider the case where there are many more insert operations than data access requests. Solutions should discuss the disc blocks that might need to be transferred between disc and main memory in these cases (or any other case that is suggested in answer to this question).

Question 8. a) <!DOCTYPE Universities [
6 p

```
<!ELEMENT Universities (City*)>
<!ELEMENT City (University*)>
<!ELEMENT University EMPTY>
<!ATTLIST City
    name ID #REQUIRED >
<!ATTLIST University
    name ID #REQUIRED
    type CDATA #REQUIRED >
] >
```

b) /Universities/City/University/@name
/Universities/City/University[@type="Technical"]
c) FOR \$c IN /Universities/City

FOR \$u IN \$c/University
WHERE \$u/@type = "Technical"
RETURN <Result>\{\$c/@name\}: \{\$u/@name\}</Result>

