
Database Tutorial 2: Functional Dependencies and Normal Forms

2015-02-10

1. (9 points) Modeling and Design

flight airline prime operating departure departure destination destination aircraft seats
code flight airline city airport city airport type
SK111 SAS SK111 SAS Gothenburg GOT Frankfurt FRA B737 140
LH555 Lufthansa SK111 SAS Gothenburg GOT Frankfurt FRA B737 140
AF111 Air France AF111 Air France Gothenburg GOT Paris CDG A320 170
LH111 Lufthansa LH111 Lufthansa Frankfurt FRA Paris CDG A321 200
LH222 Lufthansa LH222 Lufthansa Frankfurt FRA Malta MLA A320 170
AF222 Air France AF222 Air France Paris ORY Malta MLA A320 170
AB222 Air Berlin AB222 Air Berlin Frankfurt FRA Munich MUC A320 170
KM111 Air Malta KM111 Air Malta Munich MUC Malta MLA A319 140
LH333 Lufthansa KM111 Air Malta Munich MUC Malta MLA A319 140
SK222 SAS KM111 Air Malta Munich MUC Malta MLA A319 140
AF333 Air France AF333 Air France Paris CDG Frankfurt FRA A320 170

We assume the following (slightly simplified) conventions for this domain:

• the “flight code” attribute determines all other attributes on a row

• the “prime flight” is the flight code used by the airline operating the flight; the “flight code” in
the first column can thus belong to another airline that has a code sharing agreement with the
operating airline

• the “prime flight” appears in the table as a “flight code” as well, having itself as prime flight

• each airport has a unique code

• every aircraft of the same type has the same number of seats

(It is a common practice that one and the same flight can be booked using different airlines. Each airline
uses a different “flight code”, but the passengers end up in the same plane. The code used by the actual
operating airline is called the “prime flight” code. For example, whether you book flight LH333 with
Lufthansa or flight SK222 with SAS, you end up in the plane of Air Malta flight KM111.)

(a) (3 points) Identify the functional dependencies and keys in the domain as described in Question 1.
You must have some functional dependencies that are not superkeys. Consider the entire Table 1
as one relation. For functional dependencies, it is enough to list a base (a minimal set that implies
all the others).

Definition Functional Dependency: For a tuple, if it agrees in attributes A1 . . . An and also
has to agree on B1 . . . Bm we can write A1 . . . An → B1 . . . Bm

Solution:
Key : FlightCode (optionally also, assuming another company uses just one code for sharing
a flight, primeFlight, airline)
FDs :

1



FlightCode → Airline
F lightCode → PrimeF light
PrimeF light → OperatingAirline
PrimeF light → DepartureAirport
PrimeF light → DestinationAirport
PrimeF light → AircraftType
DepartureAirport → DepartureCity
DestinationAirport → DestinationCity
AircraftType → Seats
... (Transitive closure)
Working here but can be different in reality, also by transitivity trivial:
DepartureAirport,DestinationAirport, OperatingAirline → PrimeF light
DepartureAirport,DestinationAirport, Airline → FlightCode

Sample Solution (Exam VT2015):
Functionaldependencies
flightCode → (all attributes) (enough to say airline and primeFlight)
departureAirport → departureCity
destinationAirport → destinationCity
aircraft → seats
primeF light → all attributes except flightcode and airline
optionally also:
primeF lightairline → (all attributes) (enough to write flightCode)
primeF light → operatingAirline
keys :
flightCode
optionally also (assuming another company uses just one code for sharing a flight)
primeF light, airline

(b) (4 points) Starting with Table 1 and the functional dependencies and keys in (2a), decompose the
relation into BCNF (Boyce-Codd Normal Form). Show all intermediate steps.
Notice: if you find out that the relation is already in BCNF, then you have done something wrong
in (2a).

Page 2



Definition A relation R is in Boyce-Codd Normal Form (BCNF) if, whenever a nontrivial
FD X → A holds on R, X is a superkey of R.

• Remember: nontrivial means A is not part of X

• Remember: a superkey is any superset of a key (including the keys themselves).

Definition Algorithm to Decompose R to BCNF:
Given a relation R and FDs F.

1. Identify new FDs using the transitive rule, and add these to F.

2. Look among the FDs in F for a violation X → A of BCNF w.r.t. R.

3. Decompose R into two relations

• One relation RX containing all the attributes in X+.

• The original relation R, except the values in X+ that are not also in X (i.e. R−X++
X), and with a reference from X to X in RX.

4. Repeat from 2 for the two new relations until there are no more violations.

Definition Algorithm to compute X+:
Given a set of FDs, F, and a set of attributes, X:

1. Start with X+ = X.

2. For all FDs Y → B in F where Y is a subset of X+, add B to X+.

3. Repeat step 2 until there are no more FDs that apply.

Solution:
Decompose R:
R = {FlightCode, Airline, PrimeF light,OperatingAirline,DepartureAirport,DepartureCity,
DestinationAirport,DestinationCity,AircraftType, Seats}

Step 1: Transitive Rule

1. FlightCode → Airline

2. FlightCode → PrimeF light

3. PrimeF light → OperatingAirline

4. PrimeF light → DepartureAirport

5. PrimeF light → DestinationAirport

6. PrimeF light → AircraftType

7. DepartureAirport → DepartureCity

8. DestinationAirport → DestinationCity

9. AircraftType → Seats

10. (2 & 3) ⇒ FlightCode → OperatingAirline

11. (2 & 4) ⇒ FlightCode → DepartureAirport

12. (11 & 7) ⇒ FlightCode → DepartureCity

Page 3



13. (2 & 5) ⇒ FlightCode → DestinationAirport

14. (13 & 8) ⇒ FlightCode → DestinationCity

15. (2 & 6) ⇒ FlightCode → AircraftType

16. (15 & 9) ⇒ FlightCode → Seats

17. (4 & 7) ⇒ PrimeF light → DepartureCity

18. (5 & 8) ⇒ PrimeF light → DestinationCity

19. (6 & 9) ⇒ PrimeF light → Seats

Step 2: Find a violation
PrimeF light → OperatingAirline
Step 3.1: Compute PrimeF light+

PrimeF light+ = {PrimeFight}
PrimeF light+ = PrimeF light+∪
{OperatingAirline,DepartureAirport,DestinationAirport, AircraftType}
PrimeF light+ = PrimeF light+ ∪ {DepartureCity,DestinationCity, Seats}
Step 3.2: Split relation
R1 = PrimeF light+ = {PrimeFight, OperatingAirline,DepartureAirport,DestinationAirport,
AircraftType,DepartureCity,DestinationCity, Seats}
With PrimeFlight the new key and following FDs (Subset of the original FDs still holding on
new relation)

1. PrimeF light → OperatingAirline

2. PrimeF light → DepartureAirport

3. PrimeF light → DestinationAirport

4. PrimeF light → AircraftType

5. DepartureAirport → DepartureCity

6. DestinationAirport → DestinationCity

7. AircraftType → Seats

8. PrimeF light → DepartureCity

9. PrimeF light → DestinationCity

10. PrimeF light → Seats

R = R− PrimeF light+ ∪ {PrimeF light} = {FlightCode,Airline, PrimeF light}
New reference: PrimeFlight → R1.PrimeFlight
New FDs that still hold:

1. FlightCode → Airline

2. FlightCode → PrimeF light

Page 4



⇒ in BCNF
Now looking at R1
Step 2: Find a violation
DepartureAirport → DepartureCity
Step 3.1: Compute DepartureAirport+

DepartureAirport+ = {DepartureAirport} ∪ {DepartureCity}
Step 3.2: Split relation
R2 = DepartureAirport+ = {DepartureAirport, DepartureCity}
With DepartureAirport as new Key and new FD

1. DepartureAirport → DepartureCity

⇒ in BCNF
R1 = R1−DepartureAirport+ ∪ {DepartureAirport} = {PrimeFight, OperatingAirline,
DepartureAirport,DestinationAirport, AircraftType,DestinationCity, Seats}
New reference: DepartureAirport → R2.DepartureAirport
Nes FDs that still hold:

1. PrimeF light → OperatingAirline

2. PrimeF light → DepartureAirport

3. PrimeF light → DestinationAirport

4. PrimeF light → AircraftType

5. DestinationAirport → DestinationCity

6. AircraftType → Seats

7. PrimeF light → DestinationCity

8. PrimeF light → Seats

Again R1
Step 2: Find a violation
DestinationAirport → DestinationCity
Step 3.1: Compute DestinationAirport+

DestinationAirport+ = {DestinationAirport} ∪ {DestinationCity}
Step 3.2: Split relation
R3 = DestinationAirport+ = {DestinationAirport, DestinationCity}
with DestinationAirport new key and new FD

1. DestinationAirport → DestinationCity

⇒ in BCNF
R1 = R1−DestinationAirport+ ∪DestinationAirport = {PrimeFight, OperatingAirline,
DepartureAirport,DestinationAirport, AircraftType, Seats}
New reference: DestinationAirport → R3.DestinationAirport New FDs that still hold:

1. PrimeF light → OperatingAirline

2. PrimeF light → DepartureAirport

3. PrimeF light → DestinationAirport

Page 5



4. PrimeF light → AircraftType

5. AircraftType → Seats

6. PrimeF light → Seats

Again R1:
Step 2: Find a violation
AircraftType → Seats
Step 3.1: Compute AircraftType+

AircraftType+ = {AircraftType} ∪ {Seats}
Step 3.2: Split relation
R4 = AircraftType+ = {AircraftType, Seats}
New key AircraftType and new FD:

1. AircraftType → Seats

⇒ in BCNF
R1 = R1−AircraftType+∪{AircraftType} = {PrimeFight, OperatingAirline,DepartureAirport,
DestinationAirport, AircraftType}
New reference: AircraftType → R4.AircraftType
New FDs that still hold:

1. PrimeF light → OperatingAirline

2. PrimeF light → DepartureAirport

3. PrimeF light → DestinationAirport

4. PrimeF light → AircraftType

⇒ in BCNF

Final result: R = {FlightCode, Airline, PrimeF light}
PrimeFlight → R1.PrimeFlight
R1 = {PrimeFight, OperatingAirline,DepartureAirport,DestinationAirport, AircraftType}
DepartureAirport → R2.DepartureAirport
DestinationAirport → R3.DestinationAirport AircraftType → R4.AircraftType
R2 = {DepartureAirport, DepartureCity}
R3 = {DestinationAirport, DestinationCity}
R4 = {AircraftType, Seats}

Sample Solution (Exam VT2015):
R1(aircraftType, seats)
R2 (destinationAirport, destinationCity)
R3(departureAirport, departureCity)
primeFlight → operatingAirline
brings another relation if considered
R4(flightCode, airline, primeFlight, operatingAirline, departureAirport,
destinationAirport, aircraftType)
departureAirport → R3.departureAirport
destinationAirport → R2.destinationAirport
aircraftType → R1.aircraftType

Page 6



(c) (2 points) Suppose you know the attributes of a relation and that it has no functional dependencies.

• Do you have enough information to bring it to BCNF. If yes, how? If no, why?

Solution:
Sample Solution (Exam VT2015):
Yes, because it is already in BCNF.

• Do you have enough information to bring it to the Fourth Normal Form (4NF). If yes, how? If
no, why?

Definition 4NF is a strengthening of BCNF to handle redundancy that comes from inde-
pendence.

– An MVD X →→ Y is trivial for R if Y ⊆ X and X ∪ Y = R

– Non-trivial X →→ Y violates 4NF for a relation R if X is not a superkey. (Note that
what is (or is not) a superkey is still determined by FDs only)

Definition Multivalued dependencies (MVD) are another kind of dependencies. An MVD
X →→ Y says that X determines Y independently of all other attributes. An MVD X →→ Y
is an assertion that if two tuples of a relation agree on all the attributes of X, then their
components in the set of attributes Y may be swapped, and the result will be two tuples that
are also in the relation.

Example:
Code Room Teacher
TDA357 VR Niklas Broberg
TDA357 VR Rogardt Heldal
TDA357 HC1 Niklas Broberg
TDA357 HC1 Rogardt Heldal

code →→ room
code →→ teacher

Every FD is an MVD (but of course not the other way around)

Solution:
Example Solution (Exam VT2015): No. There can be multivalued dependencies that
are not functional dependencies.

2. (10 points) Suppose we have relationR(A,B,C,D,E, F,G) with keys {A,B,C}, {A,C,D} and {A,C,G},
and functional dependencies A → E, {A,B} → D, {A,B,C} → F , {A,B,C} → G, {C,D} → G,
E → F , G → B.

(a) i. (1 point) State, with reasons, which of the FDs listed above violate BCNF.

Solution:
Sample Solution (Exam HT2014):
Only A,B,C → F and A,B,C → G fullfill definition of BCNF since their left sides are
keys,
the remaining FDs A → E,A,B → D,A,B,C → F,C,D → G,E → F,G → B don’t
⇒ not in BCNF

Page 7



ii. (4 points) Decompose relation R to BCNF. Show each step in the normalization process, and
at each step indicate which functional dependency is being used. Indicate keys and references
for the resulting relations.

Solution:
Sample Solution (Exam HT2014):
Decompose R on A → E
A+ = A,E, F
R1(A, E, F )
R2(A,B,C,D,G)
Reference: A → R1.A

Decompose R2 on A,B → D
A,B+ = A,B,D
R21(A,B, D)
Reference: A → R1.A
R22(A,B,C,G)
Reference: (A,B) → R21(A,B)

Decompose R1 on E → F
E+ = E,F
R11(E, F )
R12(E,A)
Reference: E → R11.E

Decompose R22 on G → B G+ = G,B R221(G, B) R222(A,C,G) Reference: G → R221.G
Update reference for R21: A → R12.A

(b) i. (1 point) Which attributes of R are prime?

Definition An attribute is prime in relation R if it is a member of any key of R.

Solution:
Sample Solution (Exam HT2014):
A,B,C,D,G are prime and E,F are not

ii. (1 point) State, with reasons, which of the FDs listed above violate 3NF.

Definition 3NF is a weakening of BCNF. Non-trivial X → A violates 3NF for R if X is
not a superkey of R, and A is not prime in R.

Solution:
A → E: A is no superkey and E is not prime ⇒ Violates 3NF
AB → D: AB is no superkey but D is prime ⇒ OK
ABC → F : ABC is a superkey but F is not prime ⇒ OK
ABC → G: ABC is a superkey and G is prime ⇒ OK
CD → G: CD is no superkey but G is prime ⇒ OK
E → F : E is no superkey and F is not prime ⇒ Violates 3NF
G → B: G is no superkey but B is prime ⇒ OK

iii. (3 points) Decompose relation R to 3NF.

Page 8



Definition Algorithm to decompose R to 3NF: Given a relation R and a set of FDs F:
1. Compute the minimal basis of F.

Minimal basis means F, except remove A → C if you have A → B and B → C.

2. Group together FDs with the same LHS.

3. For each group, create a relation with the LHS as the key.

4. If no relation contains a key of R, add one relation containing only a key of R.

Solution: Step 1: Minimal Basis
FDs are already minimal:
A → E
A,B → D
A,B,C → F
A,B,C → G
C,D → G
E → F
G → B

Step 2: Group LHS
A → E
E → F
G → B
A,B → D
C,D → G
A,B,C → F
A,B,C → G

Step 3: Create relations
see Example Solution

Sample Solution (Exam HT2014):
R1(A,E)
R2(A,B,D)
R3(A,B,C,F,G)
R4(C,D,G)
R5(E,F)
R6(G,B)

3. (8 points)

(a) (5 points) Give an example of a relation that is in BCNF (Boyce-Codd Normal Form) but not in
4NF (Fourth Normal Form). Show all the information that is needed: attributes, dependencies,
keys, etc, clearly stating what the 4NF violations are, as well as an instance (a set of tuples).

Solution: Cmp. Course Book 106pp
name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Star Wars 1977
C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980
C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983
C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

Page 9



No BCNF violation (no non-trivial FDs at all)
But: name →→ street, city is a MVD and a 4NF violation
the MVD is not trivial ({street, city} 6⊆ {name}) and name is no superkey in the relation

(b) (3 points) Transform your relation in 3a) to 4NF.

Definition The signature of a tuple, S, is the set of all its attributes, {A1, ..., An}. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say “relation”
when we mean the signature itself.

Definition Let X,Y, Z be disjoint subsets of a signature S such that S = X ∪ Y ∪ Z. Then
Y has a multivalued dependency on X in R, written X →→ Y , if for all tuples t, u in R, if
t.X = u.X then there is a tuple v in R such that v.X = t.X, v.Y = t.Y and v.Z = u.Z
An alternative notation is X →→ Y |Z, emphasizing that Y is independent of Z.
If two tuples have the same value for X, different values for Y and different values for the Z
attributes, then there must also exist tuples where the values of Y are exchanged, otherwise Y
and Z are not independent!
If we have:
code name room teacher
TDA357 Databases VR Niklas Broberg
TDA357 Databases HC1 Rogardt Heldal

we also need to have
TDA357 Databases VR Rogardt Heldal
TDA357 Databases HC1 Niklas Broberg

otherwise room and teacher would not be independent!

Code →→ Name There are four possible combinations of values for the attributes room and
teacher, and the only possible value for the name attribute, Databases, appears in combi-
nation with all of them.

Code →→ Teacher There are two possible combinations of values for the attributes name and
room, and all possible values of the attribute teacher appear with both of these combinations.

Code →→ Room There are two possible combinations of values for the attributes name and
teacher, and all possible values of the attribute room appear with both of these combinations

Algorithm:
Consider a relation R with signature S and a set M of multivalued dependencies. R can be
brought to 4NF by the following steps:

1. If R has no 4NF violations, return R

2. If R has a violating multivalued dependency X →→ Y , decompose R to two relations

• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2

Solution:
name →→ street, city is the 4NF violation
R1 = {name} ∪ {street, city} = {name, street, city}
R2 = {name, street, city, film, year} − {street, city} = {name, year, film}
⇒ no more 4NF violations

Page 10


