
1

Database Applications

JDBC
SQL Injection
Authorization

Lecture 9

Course Objectives

Design

Construction

Applications
Usage

JDBC

• JDBC = Java DataBase Connectivity
• JDBC is Java’s call-level interface to SQL

DBMS’s.
– A library with operations that give full access

to relational databases, including:
• Creating, dropping or altering tables, views, etc.
• Modifying data in tables
• Querying tables for information
• …

JDBC Objects
• JDBC is a library that provides a set of classes

and methods for the user:
– DriverManager

• Handles connections to different DBMS. Implementation
specific.

– Connection
• Represents a connection to a specific database.

– Statement, PreparedStatement
• Represents an SQL statement or query.

– ResultSet
• Manages the result of an SQL query.

Getting connected

– Will also be done for you on the lab, except username
and password.

private static final String HOST =
”ate.ita.chalmers.se”;

private static final String DB = ”exampledb”;
private static final String USER = username;
private static final String PWD = password;

Class.forName("org.postgresql.Driver");

Properties props = new Properties();
props.setProperty("user",USERNAME);
props.setProperty("password",PASSWORD);

Connection myCon =
DriverManager.getConnection(”jdbc:postgresql://” +
HOST + ”/” + DB, props);

Statements
• A Statement object represents an SQL

statement or query, including schema-
altering statements.

• A Statement object represents one
statement at a time, but may be reused.

Statement myStmt = myCon.createStatement();

A statement is associated
with a particular connection

2

Using statements
• Statement objects have two fundamental

methods:
– ResultSet executeQuery(String query)

• Given a string, which must be a query, run that
query against the database and return the resulting
set of rows.

– int executeUpdate(String update)
• Given a string, which must be a non-query, run

that update against the database.
• Note that a JDBC update is not an SQL update,

but rather an SQL modification (which could be an
update).

Example:

String myInsertion =
”INSERT INTO Courses VALUES (’TDA357’, ’Databases’)”;

Statement myStmt = myCon.createStatement();

myStmt.executeUpdate(myInsertion);

Has return type int
(the number of rows
that were changed)

Exceptions in JDBC
• Just about anything can go wrong!

– Syntactic errors in SQL code.
– Trying to run a non-query using executeQuery.
– Permission errors.
– …

• Catch your exceptions!
try {

// database stuff goes in here
} catch (SQLException e) { … }

Executing queries
• The method executeQuery will run a

query against the database, producing a
set of rows as its result.

• A ResultSet object represents an interface
to this resulting set of rows.
– Note that the ResultSet object is not the set

of rows itself – it just allows us to access the
set of rows that is the result of a query on
some Statement object.

ResultSet
• A ResultSet holds result of an SQL query.

– boolean next()
• Advances the ”cursor” to the next row in the set, returning

false if no such rows exists, true otherwise.
– X getX(i)

• X is some type, and i is a column number (index from 1).
• Example:

returns the integer value of the first column of the current
row in the result set rs.

rs.getInt(1)

ResultSet is not a result set!
• Remember a ResultSet is more like a

cursor than an actual set – it is an
interface to the rows in the actual result
set.

• A Statement object can have one result
at a time. If the same Statement is used
again for a new query, any previous
ResultSet for that Statement will no
longer work!

3

Quiz!
What will the result be?
Statement myStmt = myCon.createStatement();
ResultSet rs =
myStmt.executeQuery(”SELECT * FROM Courses”);

while (rs.next()) {
String code = rs.getString(1);
String name = rs.getString(2);
System.out.println(name + ” (” + code + ”)”);
ResultSet rs2 = myStmt.executeQuery(
”SELECT teacher FROM GivenCourses ” +
”WHERE course = ’” + code + ”’”);

while (rs2.next())
System.out.println(” ” + rs2.getString(1));

} Due to overuse of the same Statement, only the first
course will be printed, with teachers. After the second
query is executed, rs.next() will return false.

☠
SQLi!

Two approaches
• If we need information from more than one table,

there are two different programming patterns for
doing so:
– Joining tables in SQL

• Join all the tables that we want the information from in a
single query (like we would in SQL), get one large result set
back, and use a ResultSet to iterate through this data.

– Use nested queries in Java
• Do a simple query on a single table, iterate through the

result, and for each resulting row issue a new query to the
database (like in the example on the previous page, but
without the error).

Example: Joining in SQL
Statement myStmt = myCon.createStatement();
ResultSet rs =
myStmt.executeQuery(
”SELECT code, name, period, teacher ” +
”FROM Courses, GivenCourses ” +
”WHERE code = course ” +
”ORDER BY code, period”);

String currentCourse, course;
while (rs.next()) {
course = rs.getString(1);
if (!course.equals(currentCourse))
System.out.println(rs.getString(2));

System.out.println(” Period ” + rs.getInt(3) +
”: ” + rs.getString(4));

currentCourse = course;
}

Compare with previous row
to see if this is a new course.

If it is, print its name.

Example: Using nested queries in Java
Statement cStmt = myCon.createStatement();
Statement gcStmt = myCon.createStatement();
ResultSet courses = cStmt.executeQuery(

”SELECT code, name ” +
”FROM Courses ” +
”ORDER BY code”);

while (courses.next()) {
String course = courses.getString(1);
System.out.println(courses.getString(2));
ResultSet gcourses = gcStmt.executeQuery(

”SELECT period, teacher ” +
”FROM GivenCourses
”WHERE course = ’” + course + ”’ ” +
”ORDER BY period”);

while (gcourses.next()) {
System.out.println(” Period ” + gcourses.getInt(1) +

”: ” + gcourses.getString(2));
}

}

Find the given
courses for each

course
separately with
an inner query.

☠
SQLi!

Comparison
• Joining in SQL

– Requires only a single query.
– Everything done in the DBMS, which is good at

optimising.
• Nested queries

– Many queries to send to the DBMS
• communications/network overhead
• compile and optimise many similar queries

– Logic done in Java, which means optimisations must
be done by hand.

– Limits what can be done by the DBMS optimiser.

Push complexity to DBMS

• CPUs are fast (nanoseconds per instruction)
• Network communication is slow (milliseconds per packet)

– Millions of times slower than a CPU computation!!

• Place your complexity on the DBMS if possible
– Avoid costly round-trips over network!

Imagine a database Mars/Earth
Round-trip Earth-Mars: ± 25 minutes

4

Dynamically generated queries

• Goal: pass user-input to DBMS as part of the query
– E.g. asking for information on a certain user

• Good assumption: User are attackers
– Always sanitize your inputs!

• SQL Injection (SQLi) is the most common
vulnerability on the Web today

SELECT * FROM UserInfo WHERE username = <user input>;

https://www.owasp.org/index.php/Top_10_2013-Top_10

Ethical Hacking

Never poke around with security on
systems without explicit permission
(Consider that you may be dealing with critical systems
such as nuclear powerplants or hospital equipment)

Dynamically generated queries:
Naïve approach

• String concatenation will result in SQLi
Username = abc

SELECT * FROM UserInfo WHERE

username = ‘abc’

Username = x‘ OR ’1’=‘1
SELECT * FROM UserInfo WHERE

username = ‘x‘ OR ’1’=‘1’
Username = x’ UNION (SELECT uid, password, ‘x’, ‘y’
FROM UserPasswords) --

SELECT * FROM UserInfo WHERE username = ‘x’
UNION (SELECT uid, password, ‘x’, ‘y’

FROM UserPasswords) --’

☠
SQLi!

myStmt.executeQuery(”SELECT * FROM UserInfo
WHERE username = ’”+ username +”’”);

SQL Injection: sqlmap
• SQLmap

– “automatic SQL injection and database takeover tool”
– http://sqlmap.org/

• USE ONLY WITH PERMISSION!
• Automatically discovers SQL vulnerabilities,

determines best SQLi attack and extracts entire
database

• Prevent SQL Injection Vulnerabilities in your
applications
– This tool is used in the wild, don’t be a victim of it

• We can parametrize data in a statement.
– Data that could differ is replaced with ? in the

statement text.
– ? parameters can be instantiated using

functions setX(int index, X value).

PreparedStatement myPstmt =
myCon.prepareStatement(
”INSERT INTO Courses VALUES (?,?)”);

myPstmt.setString(1, ”TDA356”);
myPstmt.setString(2, ”Databases”);

PreparedStatement PreparedStatement is superior:
Reason 1 – Security

• PreparedStatements are designed to
prevent SQL injections
– The query is separated from the attacker input

by using ’?’ placeholders
– They know how to safely encode parameters

are Strings, Integers and others
– Because of this strict separation and

encoding, attackers can not inject into the
SQL query

5

PreparedStatement is superior:
Reason 2 – Performance

• normal/prepared: Use Statement/PreparedStatement
• reuse/noreuse: create new Statement/PreparedStatement object per new query
• plain/parm: performed query uses a user-determined parameter

Almost twice as fast!

PreparedStatement is superior:
Reason 3 – easier to read/write

• Because of the placeholders, PreparedStatements are
easier to both read and write
– No messing with brackets and escaping characters

myStmt.executeQuery(”SELECT * FROM UserInfo
WHERE username = ’”+ username +”’); ☠

SQLi!

conn.prepareStatement(”SELECT * FROM UserInfo
WHERE username = ?”);

Missing “!!!

Summary JDBC
• DriverManager

– Register drivers, create connections.
• Connection

– Create statements or prepared statements.
– Close when finished.

• Statement
– Execute queries or modifications.

• PreparedStatement
– Execute a particular query or modification, possibly

parametrized. Good practice for security reasons.
• ResultSet

– Iterate through the result set of a query.

Play with SQLi

• http://sql.haxx.be
– Only available for another week or so

• http://redtiger.labs.overthewire.org/
– All SQL injection challenges

• http://overthewire.org/wargames/natas/
– All web challenges, with SQLi in later levels

Database Authorization

6

Authorization

• Not every user can be allowed to do
everything.
– Some data are secret and may only be seen

by some users.
– Some data are high integrity and may only be

modified by certain users.

Database vs file system
• A (UNIX) file system has:

– Privileges on files.
– Three different privileges: read, write, execute
– Three levels of access: owner, group, all

• A database has:
– Privileges on schema elements (tables, views,

triggers, etc.)
– Nine different privileges.
– Any number of levels of access – each user can be

given different access.

Privileges on relations
• SELECT (attributes) ON table

– Allows the user to select data from the specified table.
– Can be parametrized on attributes, meaning the user

may only see certain attributes of the table.
• INSERT (attributes) ON table

– Allows the user to insert tuples into the table.
– Can be parametrized on attributes, meaning the user

may only supply values for certain attributes of the
table. Other attributes are then set to NULL.

Privileges on relations
• DELETE ON table

– Allows the user to delete tuples from the
table.

– Cannot be parametrized on attributes.
• UPDATE (attributes) ON table

– Allows the user to update data in the table.
– Parametrizing means the user may only

update values of certain attributes.

Other privileges
• REFERENCES (attributes) ON table

– Allows the user to create a foreign reference to
(attributes of) that table.

• TRIGGER ON table
– Allows the user to create triggers for events on that

table.
• EXECUTE ON procedure

– Allows the user to execute the procedure or function,
and use it in declarations.

• USAGE, UNDER, TRUNCATE, CREATE, ALL,
…

Quiz!
What privileges are needed to perform the

following insertion?
INSERT INTO Lectures(course, period, weekday)
SELECT course, period, ’Monday’
FROM GivenCourses G
WHERE NOT EXISTS

(SELECT course, period
FROM Lectures L
WHERE L.course = G.course

AND L.period = G.period
AND weekday = ’Monday’);

We need privileges INSERT on Lectures(course, period,
weekday), SELECT on GivenCourses(course, period), and
SELECT on Lectures(course, period, weekday).

7

EXECUTE and TRIGGER
• When writing a trigger, the body may perform

selections and modifications.
– The user who writes the trigger must have all the

necessary privileges to perform those operations,
plus the TRIGGER privilege.

– The user that sets off the trigger needs only the
privilege to perform the triggering event (e.g. an
insertion). Everything that happens in the trigger is
considered done by its creator.

• The same thing goes for procedures and
functions – it is the privileges of the creator that
decides what operations may be performed, and
the user needs only EXECUTE.

Granting privileges
• You have all possible privileges on

elements that you have created.
• You may grant privileges to other users on

those elements.
– A user is referred to by an authorization ID,

which is typically a user name.
– There is a special authorization ID, public
– Granting a privilege to public makes it

available to all users.

GRANT statement

• Granting a privilege in SQL:

– Example:

GRANT list of privileges
ON element
TO list of authorization Ids;

GRANT SELECT(course, period, teacher)
ON GivenCourses
TO public;

WITH GRANT OPTION

• A user that can grant privileges on some
element can choose to grant WITH GRANT
OPTION.
– The grantee can then grant this privilege

further.
– Example:

GRANT SELECT(course, period, teacher)
ON GivenCourses
TO nibro WITH GRANT OPTION;

Revoking privileges
• Privileges can be revoked with the inverse

statement:

• Your grant of these privileges can no longer be
used by these users to justify their use of the
privilege.
– But they may still have the privilege because they have it from

another independent source.
• CASCADE and RESTRICT: like UPDATE/DELETE

policies (see foreign keys from before)

REVOKE list of privileges
ON element
FROM list of authorization Ids;

Grant diagrams

• Nodes = user + privilege + option
– Option is either owner, WITH GRANT
OPTION, or neither.

– UPDATE ON T, UPDATE(a) ON T,
UPDATE(b) ON T and UPDATE ON T WITH
GRANT OPTION all live in different nodes.

• Edge X → Y means that node X was used
to grant Y.

8

Example: A:
SELECT

ON
Courses

**

C:
SELECT (code)

ON
Courses

C:
SELECT

ON
Courses

B:
SELECT(code)

ON
Courses

*

** means A
is the owner

of this
privilege.* means B has

this privilege
WITH GRANT
OPTION.

Arrow means B
has this privilege

from A.

Manipulating edges
• If A grants P to B, we draw an edge from AP* (or

AP**) to BP(* if with grant option).
• Revoking a privilege means deleting the edge

corresponding to the privilege.
• Fundamental rule: User U has privilege P as

long as there is a path from XP** to either UP,
UP* or UP**, where X is the owner of P.
– Note that X could be U, in which case the path is 0

steps.

Example:
A:

SELECT
ON

Courses

**
B:

SELECT(code)
ON

Courses

*

C:
SELECT (code)

ON
Courses

*

C:
SELECT

ON
Courses

A revokes
SELECT(code)
ON Courses

from B.

Even though C
had granted the
privilege to B,

both nodes are
deleted since

they are cut off
from the root.

C still retains
SELECT ON
Courses, but
without the

option to grant
it further.

Summary Authorization

• Privileges in SQL
– SELECT, INSERT, DELETE, UPDATE,
REFERENCE, TRIGGER, EXECUTE …

• Granting and revoking privileges
– Authentication IDs, public
– WITH GRANT OPTION

• Grant diagrams

Next time, Lecture 10

Transactions

