Database design IV

INDs and 4NF
Design wrapup

Work flow

- DRAW your diagram of the domain.
- TRANSLATE to relations forming a schema
- IDENTIFY dependencies from domain!
- RELATE the dependencies to the schema, to find more constraints, and to validate your design.

Last time

- Functional dependencies (FDs) $\mathrm{X} \rightarrow \mathrm{A}$
- $X^{+}=$Closure of $X=$ all derivable (from X) attributes
- $\mathrm{F}^{+}=$Closure of $\mathrm{F}=$ all implied (from F) FDs
- Superkeys, keys and primary keys
- Boyce-Codd Normal Form (BCNF):
- The LHS (X) of every non-trivial FD $(\mathrm{X} \rightarrow \mathrm{A})$ must be a superkey
- Decomposition:
- Split up relations until normal form (e.g. BCNF) holds
- Make sure to preserve recovery!!! No lossy joins allowed

Normal Forms?!

- Use normal forms to detect anomalies (e.g. Redundancy)
- Use decomposition to remove anomalies
- $1 \mathrm{NF}+\ldots=2 \mathrm{NF}$
- $2 \mathrm{NF}+\ldots=3 \mathrm{NF}$
- $3 N F+\ldots=B C N F$ (3.5NF)
- BCNF + ... $=4 \mathrm{NF}$
- $4 N F+\ldots \quad=5 N F$
- $5 \mathrm{NF}+\ldots=6 \mathrm{NF} \quad$ In this course
- $6 \mathrm{NF} \subseteq 5 \mathrm{NF} \subseteq 4 \mathrm{NF} \subseteq \mathrm{BCNF} \subseteq 3 N F \subseteq 2 N F \subseteq 1 N F$

Stronger Requirements
(e.g. a database in 6 NF is also in 5 NF , etc.)

Normal Forms?!

BCNF Example

Decompose Courses into BCNF.

Courses (code, period, name, teacher)

code \rightarrow name	Violates BCNF, so we will kick it out of the relation
code, period \rightarrow teacher	
\{code $\}^{+}=$\{code, name \}	
Courses 1 (code, name)	Create new relation

Courses2 (code, period, teacher) code -> Courses1.code

Remove 'name' from old relation
No BCNF violations left, so we're done!

Tricky example of BCNF decomposition:
GivenCourses (course, period, teacher) course -> Courses.code course, period \rightarrow teacher teacher \rightarrow course Violation!

Two keys:
\{course, period\} \{teacher, period\}

Decompose:
Teaches (teacher, course)
course -> Courses.code
GivenCourses (period, teacher) teacher -> Teaches.teacher

Quiz: What just went wrong?

Teaches (teacher, course) course -> Courses.code
 GivenCourses (period, teacher) teacher -> Teaches.teacher

teacher	course
Niklas Broberg	TDA357
Graham Kemp	TDA357

per	teacher
2	Niklas Broberg
2	Graham Kemp

course	per	teacher
TDA357	2	Niklas Broberg
TDA357	2	Graham Kemp

course, period \rightarrow teacher ??

Third Normal Form (3NF)

- 3NF is a weakening of BCNF that handles this situation.
- An attribute is prime in relation R if it is a member of any key of R.
- e.g. keys: \{course, period\} \{teacher, period\} Prime attributes: \{course, period, teacher\}
$X \rightarrow A$ is in BCNF
iff either:
- $X \rightarrow A$ is a trivial $F D$
- X is a superkey
$X \rightarrow A$ is in 3NF
iff either:
- $X \rightarrow A$ is a trivial FD
- X is a superkey
- A-X has only prime attributes

Different algorithm for 3NF

- Given a relation R and a set of FDs F :
- Compute the minimal basis of F.
- Minimal basis means F^{+}, except remove $A \rightarrow C$ if you have $A \rightarrow B$ and $B \rightarrow C$ in F^{+}.
- Group together FDs with the same LHS.
- For each group, create a relation with the LHS as the key.
- If no relation contains a key of R, add one relation containing only a key of R.

Example:

Courses (code, period, name, teacher)
code \rightarrow name
code, period \rightarrow teacher
teacher \rightarrow code
teacher \rightarrow name
Decompose:
Courses (code, name)
GivenCourses (course, period, teacher)
course -> Courses.code teacher -> Teaches.teacher
Teaches (teacher, course) course -> Courses.code

GivenCourses contains a key for the original Courses relation, so we are done.

Earlier tricky example revisited:

```
GivenCourses(course, period, teacher)
    course -> Courses.code
course, period }->\mathrm{ teacher
teacher }->\mathrm{ course
    {course, period}
    {teacher, period}
```

Two keys:

Since all attributes are members of some key, i.e. all attributes are prime, there are no 3NF violations. Hence GivenCourses is in 3NF.

Quiz: What's the problem now then?

One 3NF solution for scheduler

```
Courses(code, name)
GivenCourses(course, period, #students, teacher)
    course -> Courses.code
Rooms (name, #seats)
Lectures(course, period, room, weekday, hour, teacher,
    (course, period, teacher) ->
    GivenCourses.(course, period, teacher)
room -> Rooms.name
(room, period, weekday, hour) unique
(teacher, period, weekday, hour) unique
```

Quiz: What's the problem now then?

Redundancy with 3NF

GivenCourses (course, period, teacher) course -> Courses.code course, period \rightarrow teacher teacher \rightarrow course
Two keys:
Two keys:
{course, period}
{course, period}
{teacher, period}
{teacher, period}

GivenCourses is in 3NF. But teacher \rightarrow course violates BCNF, since teacher is not a key. As a result, course will be redundantly repeated!

3NF vs BCNF

- Three important properties of decomposition:

1. Recovery (loss-less join)
2. No redundancy
3. Dependency preservation

- $3 N F$ guarantees 1 and 3 , but not 2 .
- BCNF guarantees 1 and (almost) 2, but not 3 .
- 3 can sometimes be recovered separately through "assertions" (costly). More on this later.

Almost?

Example:

```
Courses (code, name)
    code }->\mathrm{ name
LecturesIn(code, room, teacher)
    code -> Courses.code
```

$\underline{\text { code }}$	name
TDA357	Databases

$\underline{\text { code }}$	$\underline{\text { room }}$	teacher
TDA357	VR	Niklas Broberg
TDA357	VR	Graham Kemp
TDA357	HC1	Niklas Broberg
TDA357	HC1	Graham Kemp

These two relations are in BCNF, but there's lots of redundancy!

Let's start from the bottom...

$\underline{\text { code }}$	room
TDA357	HC1
TDA357	VR

$\underline{\text { code }}$	teacher
TDA357	Niklas Broberg
TDA357	Graham Kemp

\rightarrow

$\underline{\text { code }}$	room	teacher
TDA357	VR	Niklas Broberg
TDA357	VR	Graham Kemp
TDA357	HC1	Niklas Broberg
TDA357	HC1	Graham Kemp

$』$

- No redundancy before join
- The two starting tables are what we really want to have

Compare with E/R

BREAK

Independencies (INDs)

- Some attributes are not uniquely defined (as with FDs), but are still independent of the values of other attributes.
- In our example: code does not determine room, there can be several rooms for a course. But the rooms a course uses is independent of the teachers on the course.
- $X \rightarrow Y \mid Z$ states that from the point of view of X, Y and Z are independent.
- Just $X \rightarrow Y$ means that X 's relationship to Y is independent of all other attributes.
(INDs are called Multivalued Dependencies (MVDs) in the book, but no need to remember that name)

Independent how?

- An IND $X \rightarrow Y$ is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.
- If (for some X) all values of Y (for that X) can be combined with all values of Z (for that X), then (from X) Y and Z are independent.

Picture of IND $X \rightarrow Y \mid Z$

If two tuples have the same value for X, different values for Y and different values for the Z attributes, then there must also exist tuples where the values of Y are exchanged, otherwise Y and Z are not independent!

Implied tuples

Courses (code, name, room, teacher)

If we have:

$\underline{\text { code }}$	name	$\underline{\text { room }}$	teacher
TDA357	Databases	VR	Niklas Broberg
TDA357	Databases	HC1	Graham Kemp

we must also have:

TDA357	Databases	HC1	Niklas Broberg
TDA357	Databases	VR	Graham Kemp

otherwise room and teacher would not be independent!

Compare with joining

code	room
TDA357	HC1
TDA357	VR

$\underline{\text { code }}$	teacher
TDA357	Niklas Broberg
TDA357	Graham Kemp

$\stackrel{\square}{\text { code }}$| TDA357 | VR | Niklas Broberg |
| :--- | :--- | :--- |
| TDA357 | VR | Graham Kemp |
| TDA357 | HC 1 | Niklas Broberg |
| TDA357 | HC 1 | Graham Kemp |

- Joining two independent relations yields a relation with all combinations of values!

Another example

	Name	Hobby	Lang	LangSkill
	Alice	Gaming	Dutch	A
	Alice	Gaming	French	B
Name Hobby Lang, LangSkil	Alice	Gaming	English	A
Alice Gaming Dutch, A	Alice	Gaming	Swedish	C
Cooking French, B	Alice	Cooking	Dutch	A
Hiking English, A	Alice	Cooking	French	B
Swedish, C	Alice	Cooking	English	A
	Alice	Cooking	Swedish	C
Bob $<\underset{\text { Skate }}{\text { Fish }} 7$ English, A	Alice	Hiking	Dutch	A
	Alice	Hiking	French	B
	Alice	Hiking	English	A
	Alice	Hiking	Swedish	C
	Bob	Fish	English	A
name \rightarrow hobby \| lang, langskill	Bob	Skate	English	A

- For a given name, hobby and \{language, langskill\} are independent
- For a given name, all combinations of hobby and \{lang, langskill\} must be able to exist

FDs are INDs

- Every FD is an IND (but of course not the other way around). Compare the following cases:
- If $X \gg$ holds for a relation, then all possible values of Y for that X must be combined with all possible combinations of values for "all other attributes" for that X.
- If $X \rightarrow A$, there is only one possible value of A for that X, and it will appear in all tuples where X appears. Thus it will be combined with all combinations of values that exist for that X for the rest of the attributes.

Example:

$\underline{\text { code }}$	name	$\underline{\text { room }}$	teacher
TDA357	Databases	VR	Niklas Broberg
TDA357	Databases	VR	Graham Kemp
TDA357	Databases	HC1	Niklas Broberg
TDA357	Databases	HC1	Graham Kemp

There are four possible combinations of values for the attributes
code \Rightarrow name
code \Rightarrow teacher room and teacher, and the only possible value for the name attribute, "Databases", appears in combination with all of them.

There are two possible combinations of values for the attributes
code \Rightarrow teacher name and room, and all possible values of the attribute teacher appear with both of these combinations.

There are two possible combinations of values for the attributes name and teacher, and all possible values of the attribute room appear with both of these combinations.

IND rules $=$ FD rules

- Complementation
- If $X \rightarrow Y$, and Z is all other attributes, then $X \rightarrow Z$.
- Splitting doesn't hold!!
- code \Rightarrow room, \#seats
- code \rightarrow room does not hold, since room and \#seats are not independent!
- None of the other rules for FDs hold either.

Example:

$\underline{\text { code }}$	name	room	\#seats	teacher
TDA357	Databases	VR	216	Niklas Broberg
TDA357	Databases	VR	216	Graham Kemp
TDA357	Databases	HC1	126	Niklas Broberg
TDA357	Databases	HC1	126	Graham Kemp

$$
\text { code } \Rightarrow \text { room, \#seats }
$$

We cannot freely swap values in the \#seats and room columns, so neither

$$
\text { code } \Rightarrow \text { room }
$$

or
code \#\#seats
holds.

Fourth Normal Form (4NF)

- The redundancy that comes from IND's is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats IND's as FD's when it comes to decomposition, but not when determining keys of the relation.

Fourth Normal Form

- 4NF is a strengthening of BCNF to handle redundancy that comes from independence.
- An IND $X \rightarrow Y$ is trivial for R if
- Y is a subset of X
- X and Y together $=R$
- Non-trivial $X \rightarrow A$ violates $B C N F$ for a relation R if X is not a superkey.
- Non-trivial $X \rightarrow Y$ violates 4NF for a relation R if X is not a superkey.
- Note that what is a superkey or not is still determined by FDs only.

BCNF Versus 4NF

- Remember that every FD $X \rightarrow Y$ is also a IND, $X \rightarrow Y$.
- Thus, if R is in $4 N F$, it is certainly in BCNF.
- Because any BCNF violation is a 4NF violation.
- But R could be in BCNF and not 4NF, because IND's are "invisible" to BCNF.

INDs for validation

- Remember that FDs can:
- Allow you to validate your schema.
- Find "extra" constraints that the basic structure doesn't capture.
- INDs ONLY validate your schema.
- No extra dependencies to be found.
- If your E-R diagram and translation are correct, INDs don't matter.

Example

$R($ code, name, period, room, seats, teacher) code \rightarrow name
code, period \rightarrow room, teacher
room \rightarrow seats
code, period \geqslant room, seats
code, period \rightarrow teacher
(on blackboard)

Example:

 E-R does not imply BCNF

Quiz: What just went wrong?

Fix attempt \#1

```
Students (ssnr)
Courses (code)
Rooms (name)
Lectures (course,time,room)
    course -> Courses.code
    room -> Rooms.name
Seats (room, number)
    room -> Rooms.name
Occupied (course, time, number, student)
    (course,time) -> Lectures.(course,time)
    student -> Students.ssnr
    (room, number) -> Seats.(room,number) ??
```

We broke the reference! Now we could (in theory) book seats that don't exist in the room where the lecture is given!

Fix attempt \#2

```
Students (ssnr)
Courses (code)
Rooms (name)
Lectures (course, time,room)
    course -> Courses.code
    room -> Rooms.name
Seats (room, number)
    room -> Rooms.name
```



```
Occupied (course, time, number,room, student)
    (course,time) -> Lectures.(course,time)
    (room,number) -> Seats. (room,number)
    student -> Students.ssnr
No guarantee that the room where the seat is booked is the same room that the lecture is in!
```

... and redundancy (3NF solution)

Fix attempt \#3

```
Students (ssnr)
Courses (code)
Rooms (name)
Lectures (course,time,room)
    course -> Courses.code
    room -> Rooms.name
Seats (room, number)
    room -> Rooms.name
Occupied(course, time, number, room, student)
    (course,time,room) ->
                            Lectures.(course,time,room)
    (room,number) -> Seats. (room, number)
    student -> Students.ssnr
```

Still redundancy though (3NF solution). Possibly the best we can do though.

Next time, Lecture 5

Database Construction SQL Data Definition Language

