
1

Database Usage
(and Construction)

More SQL Queries and Relational Algebra

Lecture 8

Quiz!

What will the result of this query be?
SELECT 1
FROM Courses; code name

TDA357 Databases
TIN090 Algorithms

Courses

1
1
1

For each row in Courses that passes the test (all
rows since we have no test), project the value 1.

Constants

• Constants can be used in projections.
SELECT code, name,

’Database course’ AS comment
FROM Courses
WHERE name LIKE ’%Database%’;

code name comment
TDA357 Databases Database course

Aggregation

• Aggregation functions are functions that
produce a single value over a relation.
– SUM, MAX, MIN, AVG, COUNT…

SELECT MAX(nrSeats)
FROM Rooms;

SELECT COUNT(*)
FROM Lectures
WHERE room = ’HC1’;

MAX actually has
Rooms as an implicit

argument!

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

NOT correct!
Error when trying to execute, why is it so?

SELECT name, MAX(nrSeats)
FROM Rooms;

Aggregate functions are special
• Compare the following:

– The ordinary selection/projection results in a
relation with a single attribute nrSeats, and
one row for each row in Rooms.

– The aggregation results in a single value, not
a relation.

– We can’t mix both kinds in the same query!
(almost…more on this later)

SELECT MAX(nrSeats)
FROM Rooms;

SELECT nrSeats
FROM Rooms;

2

name nrSeats
HC1 105

HC2 115

VR 230

HA1 146

HA4 152

SELECT nrSeats
FROM Rooms;

nrSeats
105
115

230

146

152

MAX(nrSeats)
230

SELECT MAX(nrSeats)
FROM Rooms;

nrSeats

230
SELECT MAX(nrSeats) AS nrSeats
FROM Rooms;

name nrSeats
HC1 105

HC2 115

VR 230

HA1 146

HA4 152

Quiz! New attempt
List the room(s) with the highest number of seats,

and its number of seats.

Not correct either, will list all rooms, together with
the highest number of seats in any room.

Let’s try yet again…

SELECT name,
(SELECT MAX(nrSeats)
FROM Rooms)

FROM Rooms;

SELECT name,
(SELECT MAX(nrSeats)
FROM Rooms)

FROM Rooms;

name nrSeats
HC1 105

HC2 115

VR 230

HA1 146

HA4 152

name nrSeats
HC1 230

HC2 230

VR 230

HA1 230

HA4 230

Quiz! New attempt
List the room(s) with the highest number of seats,

and its number of seats.

Still not correct, MAX(nrSeats) is not a test over a
row so it can’t appear in the WHERE clause!

Let’s try yet again…

SELECT name, nrSeats
FROM Rooms
WHERE nrSeats = MAX(nrSeats);

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

That’s better!

SELECT name, nrSeats
FROM Rooms
WHERE nrSeats =

(SELECT MAX(nrSeats)
FROM Rooms);

3

Single-value queries

• If the result of a query is known to be a
single value (like for MAX), the whole
query may be used as a value.

• Dynamic verification, so be careful…

SELECT name, nrSeats
FROM Rooms
WHERE nrSeats =

(SELECT MAX(nrSeats)
FROM Rooms);

NULL in aggregations

• NULL never contributes to a sum, average
or count, and can never be the maximum
or minimum value.

• If there are no non-null values, the result
of the aggregation is NULL.

Capacity per campus?
name capacity campus

HB2 186 Johanneberg

HC1 105 Johanneberg

HC2 115 Johanneberg

Jupiter44 64 Lindholmen

Svea239 60 Lindholmen

VR 300 Neverland

name capacity campus
HB2 186 Johanneberg

HC1 105 Johanneberg

HC2 115 Johanneberg

Jupiter44 64 Lindholmen

Svea239 60 Lindholmen

VR 300 Neverland

}
}

406

124

SUM(capacity) campus
406 Johanneberg

124 Lindholmen

300 Neverland

SELECT SUM(capacity), campus FROM Rooms GROUP BY campus;

Grouping
• Grouping intuitively means to partition a relation

into several groups, based on the value of some
attribute(s).
– ”All courses with this teacher go in this group, all

courses with that teacher go in that group, …”
• Each group is a sub-relation, and aggregations

can be computed over them.
• Within each group, all rows have the same value

for the attribute(s) grouped on, and therefore we
can project that value as well!

Grouping
• Grouping = given a relation R, a set of attributes

X, and a set of aggregation expressions G;
partition R into groups R1…Rn such that all rows
in Ri have the same value on all attributes in X,
and project X and G for each group.

– ”For each X, compute G”

– γ = gamma = greek letter g = grouping

γX,G(R)
SELECT X,G
FROM R
GROUP BY X;

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Mickey 130

DIT952 3 Mickey 70

TIN090 1 Tweety 62

teacher AVG(nrSt.)
Mickey 100

Tweety 62

γteacher, AVG(nrStudents)(GivenCourses)

SQL?

Relational Algebra?

Result?

4

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Mickey 130

DIT952 3 Mickey 70

TIN090 1 Tweety 62

teacher AVG(nrSt.)
Mickey 100

Tweety 62

γteacher, AVG(nrStudents)(GivenCourses)

SQL?

Relational Algebra?

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Mickey 130

DIT952 3 Mickey 70

TIN090 1 Tweety 62

teacher AVG(nrSt.)
Mickey 100

Tweety 62

γteacher, AVG(nrStudents)(GivenCourses)Relational Algebra?

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,
AVG(nrStudents)

FROM GivenCourses
GROUP BY teacher;

course per teacher nrSt.
TDA357 2 Mickey 130

DIT952 3 Mickey 70

TIN090 1 Tweety 62

teacher AVG(nrSt.)
Mickey 100

Tweety 62

γteacher, AVG(nrStudents)(GivenCourses)

Specialized renaming of attributes

• We’ve seen the general renaming operator
already:

– Rename R to A and its attributes to X.
• Can be akward to use, so we are allowed

an easier way to rename attributes:

– E.g.
– Works in normal projection (π) as well.

ρA(X)(R)

γX,G→B(R)
γteacher, AVG(nrStudents)→avgStudents(GivenCourses)

Tests on groups
• Aggregations can’t be put in the WHERE clause

– they’re not functions on rows but on groups.
• Sometimes we want to perform tests on the

result of an aggregation.
– Example: List all teachers who have an average

number of students of >100 in their courses.
• SQL allows us to put such tests in a special

HAVING clause after GROUP BY.

Example

code period teacher #students

TDA357 2 Mickey 130

TIN090 1 Tweety 95
TDA357 3 Donald 135
TDA283 2 Donald 70

SELECT teacher
FROM GivenCourses
GROUP BY teacher
HAVING AVG(nrStudents) > 100;

AVG(nrSt.)
130

95

102.5

5

Quiz!
• There is no correspondence in relational

algebra to the HAVING clause of SQL.
Why?
– Because we can express it with an extra

renaming and a selection. Example:
SELECT teacher
FROM GivenCourses
GROUP BY teacher
HAVING AVG(nrStudents) > 100;

σavgSt > 100(γteacher, AVG(nrStudents) → avgSt(GivenCourses))

Sorting relations
• Relations are unordered by default.
• Operations could potentially change any existing

ordering.

– Sort relation R on attributes X.
– Ordering only makes sense at the top level, or if only

a given number of rows are sought, e.g. the top 5.
– (For top 5: Append ”LIMIT 5”)

• τ = tau = greek letter t = sort (s is taken)

τX(R) ORDER BY X [DESC]

Example

SELECT *
FROM Courses
ORDER BY name;

code name

TIN090 Algorithms

TDA590 Compiler
Construction

TDA357 Databases

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

SELECT X,G
FROM T
WHERE C
GROUP BY Y
HAVING D
ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))

Only the SELECT
and FROM clauses
must be included.

What?

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

SELECT X,G
FROM T
WHERE C
GROUP BY Y
HAVING D
ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))

Only the SELECT
and FROM clauses
must be included.

X must be a subset of Y.
Primes ’ mean we need some renaming.

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

course per teacher nrSt
TDA357 2 Mickey 130

TDA357 3 Donald 95

TIN090 1 Tweety 62

code name
TDA357 Databases
TIN090 Algorithms

Courses
GivenCourses

τavSt(πname, avSt(σavSt > 100
(γcode, name, AVG(nrStudents)→avSt
(σcode = course(Courses x GivenCourses)))))

6

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

code name course per teacher nrSt
TDA357 Databases TDA357 2 Mickey 130

TDA357 Databases TDA357 3 Donald 95

TDA357 Databases TIN090 1 Tweety 62

TIN090 Algorithms TDA357 2 Mickey 130

TIN090 Algorithms TDA357 3 Donald 95

TIN090 Algorithms TIN090 1 Tweety 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name course per teacher nrSt
TDA357 Databases TDA357 2 Mickey 130

TDA357 Databases TDA357 3 Donald 95

TDA357 Databases TIN090 1 Tweety 62

TIN090 Algorithms TDA357 2 Mickey 130

TIN090 Algorithms TDA357 3 Donald 95

TIN090 Algorithms TIN090 1 Tweety 62

code name course per teacher nrSt
TDA357 Databases TDA357 2 Mickey 130

TDA357 Databases TDA357 3 Donald 95

TIN090 Algorithms TIN090 1 Tweety 62

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

AVG(nrSt)

112.5

62

code name
TDA357 Databases

TIN090 Algorithms

AVG(nrSt)
112.5

62

code name course per teacher nrSt
TDA357 Databases TDA357 2 Mickey 130

TDA357 Databases TDA357 3 Donald 95

TIN090 Algorithms TIN090 1 Tweety 62

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name
TDA357 Databases

TIN090 Algorithms

AVG(nrSt)
112.5

62

code name
TDA357 Databases

AVG(nrSt)
112.5

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

code name
TDA357 Databases

AVG(nrSt)
112.5

name avSt
Databases 112.5

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))

name avSt
Databases 112.5

7

Break

Why not simply this?
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course, avSt > 100
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

Because at the time of “WHERE”,
aggregates have not been computed yet!

Remember: If “GROUP BY” is used, then aggregates are computed
over each “GROUP BY” group, not over all entries

SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses
WHERE code = course,
GROUP BY code, name
HAVING AVG(nrStudents) > 100
ORDER BY avSt;

What about this then!?!?

Lexical vs logical ordering

• Lexical order: the way it’s written in SQL
• Logical order: the way the query executes

SELECT attributes
FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
ORDER BY attributes

FROM tables
WHERE tests over rows
GROUP BY attributes
HAVING tests over groups
SELECT ”attributes”
ORDER BY attributes

Lexical order Logical order

Available attributes in SELECT
• Aggregate functions “summarize” values per group

– Without GROUP BY, the group is the entire table
• If aggregate functions are used, then only attributes can

be selected that make sense in a grouping

SELECT campus, MAX(capacity)
FROM Rooms

SELECT MAX(capacity)
FROM Rooms

SELECT campus, MAX(capacity)
FROM Rooms
GROUP BY campus

Valid! Group = table, MAX returns 1 value

Invalid! Group = table, MAX returns 1 value,
but 3 different campuses

Valid! Grouped per campus, MAX returns 1
value per campus, there is 1 campus name
per group

SQL Exercises

Music Website

Tracks(trackId,title, length)
length > 0

Artists(artistId, name)

Albums(albumId,title, yearReleased)

TracksOnAlbum(album,trackNr,track)
album -> Albums.albumId
track -> Tracks.trackId
(album,track) unique
trackNr > 0

Participates(track, artist)
track -> Tracks.trackId
artist -> Artists.artistId

Users(username, email, name)
email unique

Playlists(user, playlistName)
user -> Users.username

InList(user, playlist, number,track)
(user, playlist) -> Playlists.(user, playlistName)
track -> Tracks.trackId

PlayLog(user,time,track)
user -> Users.username
track -> Tracks.trackId
(user,time) unique

8

Music Website – Ex1

• Write an SQL query that lists all artists
appearing on any album released from
2016

SELECT *
FROM Artists
WHERE artistId IN (

SELECT artist
FROM Participates WHERE track IN (

SELECT track
FROM TracksOnAlbum
WHERE album IN (

SELECT albumId
FROM Albums
WHERE yearReleased >= '1/1/2016')

)
);

Music Website – Ex2

• Write an SQL query that lists, for each
user, how many playlists that user has.

SELECT username, COUNT(playlistname)
FROM PlayLists
GROUP BY (username);

Music Website – Ex3

• Write an SQL query that lists, for each
track, its ``trackId`` and title, together with
the number of times that track has been
played, and the number of distinct users
that have played it.

SELECT trackId, title, COUNT(username) AS timesplayed,
COUNT(DISTINCT username) AS differentUsers

FROM PlayLog
NATURAL JOIN Tracks
GROUP BY trackId, title;

Next time, Lecture 9

More on SQL and Relational Algebra

