
Database design IV

Normal Forms:
Summary

Lecture 4

”We want a database that
we can use for scheduling
courses and lectures. This
is how it’s supposed to
work: …”

Courses(code, name, dept, examiner)
Rooms(roomNr, name, building)
Lectures(roomNr, day, hour, course)

roomNr -> Rooms.roomNr
course -> Courses.code

Course

code

dept

name

responsible

Room

roomNr

name

building

InOf Lecture

day hour Functional dependencies
Decomposition using
normal forms to remove
anomalies

Fix errors

Add constraints

Problem description

ER diagram

Relational database
schema

Work flow

• DRAW your diagram of the domain.
• TRANSLATE to relations forming a

schema
• IDENTIFY dependencies from domain!
• RELATE the dependencies to the

schema, to find more constraints, and to
validate your design.

Last time
• Functional dependencies (FDs) X → A
• X+ = Closure of X = all derivable (from X) attributes
• F+ = Closure of F = all implied (from F) FDs
• Superkeys, keys and primary keys
• Boyce-Codd Normal Form (BCNF):

– The LHS (X) of every non-trivial FD (X → A) must be a superkey
• Decomposition:

– Split up relations until normal form (e.g. BCNF) holds
– Make sure to preserve recovery!!! No lossy joins allowed

Normal Forms?!
• Use normal forms to detect anomalies (e.g. Redundancy)
• Use decomposition to remove anomalies

• 1NF + ... = 2NF
• 2NF + ... = 3NF
• 3NF + ... = BCNF (3.5NF)
• BCNF + ... = 4NF
• 4NF + ... = 5NF
• 5NF + ... = 6NF

• 6NF ⊆ 5NF ⊆ 4NF ⊆ BCNF ⊆ 3NF ⊆ 2NF ⊆ 1NF

Stronger
Requirements

In this course

(e.g. a database in 6NF is also in 5NF, etc.)

Normal Forms?!

In this
course

Decompose Courses into BCNF.
Courses(code, period, name, teacher)

code → name
code, period → teacher

Courses1(code, name)

{code}+ = {code, name}

No BCNF violations left, so we’re done!

BCNF Example

Violates BCNF, so we will kick it out of the relation

Courses2(code, period, teacher)
code -> Courses1.code

Create new relation

Remove ‘name’ from old relation
and add reference

Tricky example of BCNF decomposition:

Decompose:

GivenCourses(course, period, teacher)
course -> Courses.code

course, period → teacher
teacher → course

Violation!

Teaches(teacher, course)
course -> Courses.code

GivenCourses(period, teacher)
teacher -> Teaches.teacher

Quiz: What just went wrong?

Two keys:
{course, period}
{teacher, period}

Teaches(teacher, course)
course -> Courses.code

GivenCourses(period, teacher)
teacher -> Teaches.teacher

teacher course
Niklas Broberg TDA357

Graham Kemp TDA357

per teacher
2 Mickey

2 Tweety

course per teacher
TDA357 2 Mickey

TDA357 2 Tweety

course, period → teacher ??

Third Normal Form (3NF)

• 3NF is a weakening of BCNF that handles
this situation.
– An attribute is prime in relation R if it is a

member of any key of R.
• e.g. keys: {course, period}{teacher, period}

Prime attributes: {course, period, teacher}

X → A is in BCNF
iff either:
• X → A is a trivial FD
• X is a superkey

X → A is in 3NF
iff either:
• X → A is a trivial FD
• X is a superkey
• A-X has only prime attributes

Different algorithm for 3NF

• Given a relation R and a set of FDs F:
– Compute the minimal basis of F.

• Minimal basis means F+, except remove A → C if
you have A → B and B → C in F+.

– Group together FDs with the same LHS.
– For each group, create a relation with the LHS

as the key.
– If no relation contains a key of R, add one

relation containing only a key of R.

Example:

Decompose:

Courses(code, period, name, teacher)

code → name
code, period → teacher
teacher → code

teacher → name

Two keys:
{code, period}
{teacher, period}

Courses(code, name)
GivenCourses(course, period, teacher)
course -> Courses.code
teacher -> Teaches.teacher

Teaches(teacher, course)
course -> Courses.code

GivenCourses contains a key for the original Courses
relation, so we are done.

Prime attributes:
{code, period,
teacher}

Earlier tricky example revisited:

Since all attributes are members of some key, i.e.
all attributes are prime, there are no 3NF
violations. Hence GivenCourses is in 3NF.

GivenCourses(course, period, teacher)
course -> Courses.code

course, period → teacher
teacher → course

Two keys:
{course, period}
{teacher, period}

Quiz: What’s the problem now then?

One 3NF solution for scheduler
Courses(code, name)
GivenCourses(course, period, #students, teacher)

course -> Courses.code
Rooms(name, #seats)
Lectures(course, period, room, weekday, hour, teacher)

(course, period, teacher) ->
GivenCourses.(course, period, teacher)

room -> Rooms.name
(room, period, weekday, hour) unique
(teacher, period, weekday, hour) unique

Quiz: What’s the problem now then?

GivenCourses is in 3NF. But teacher → course
violates BCNF, since teacher is not a key. As a
result, course will be redundantly repeated!

GivenCourses(course, period, teacher)
course -> Courses.code

course, period → teacher
teacher → course

Two keys:
{course, period}
{teacher, period}

Redundancy with 3NF

3NF vs BCNF
• Three important properties of decomposition:

1. Recovery (loss-less join)
2. No redundancy
3. Dependency preservation

• 3NF guarantees 1 and 3, but not 2.

• BCNF guarantees 1 and (almost) 2, but not 3.
– 3 can sometimes be recovered separately through

”assertions” (costly). More on this later.

Almost?
Example:
Courses(code, name)
code → name

LecturesIn(code, room, teacher)
code -> Courses.code

code room teacher
TDA357 VR Mickey

TDA357 VR Tweety

TDA357 HC1 Mickey

TDA357 HC1 Tweety
code name

TDA357 Databases

These two relations are in BCNF, but there’s lots of
redundancy!

Let’s start from the bottom…

• No redundancy before join
• The two starting tables are what we really want to have

code room
TDA357 HC1

TDA357 VR

code teacher
TDA357 Mickey

TDA357 Tweety

code room teacher
TDA357 VR Mickey

TDA357 VR Tweety

TDA357 HC1 Mickey

TDA357 HC1 Tweety

Compare with E/R

Course

code

Room

name

LecturesIn

Teacher

name

Course

code

Room

name

LecturesIn

Teacher

name

Gives

LecturesIn(code, teacher, room)
code -> Courses.code
room -> Rooms.name
teacher -> Teachers.name

LecturesIn(code, room)
code -> Courses.code
room -> Rooms.name

Gives(code, teacher)
code -> Courses.code
teacher -> Teachers.name

Before decomposition

After decomposition

BREAK

QUIZ TIME!!

Q1: How many icecreams does
one boy eat?

Q2: How many boys can eat
one ice cream?

Q3: How many captains can a
team have?

Q4: Can a player be a captain
without belonging to that team?

Q5: How many lectures can be
held in a room?

Q6: what is “cartoons”?

Q7: Draw the ER diagram

• A person has a name, birthday and SSN.
• Names and birthdays are not unique

Personssn

name birthdate

Personssn

name birthdate

Personssn

name

Personssn

name birthdate

(C)

(A) (B)

(D)

Q8: Draw the ER diagram
• A person has a name, birthday and SSN.
• Names and birthdays are not unique

• A person can create many paintings
• but paintings are created by exactly one person

(A)

Personssn

name birthdate

Painting

Creates

(B)

Personssn

name birthdate

Painting

Creates

(C)

Personssn

name birthdate

Painting

Creates

Q9: Create the relational
scheme

Person(ssn, name, birthdate)
Painting(name)
createdBy(work, painter)

work -> Painting.name
painter -> Person.ssn

(C)

Person(ssn, name, birthdate)
Painting(name)
createdBy(work, painter)

work -> Painting.name
painter -> Person.ssn

(B)

Person(ssn, name, birthdate)
Painting(name, painter)

painter -> Person.ssn

(A)

Person(ssn, name, birthdate)
Painting(name)
createdBy(work, painter)

work -> Painting.name
painter -> Person.ssn

(D)

Personssn

name birthdate

Painting

Creates

name

Q10: Create the relational
scheme for the entities only

person (id, name, address)
car (license, year, model)
accident (reportnum, date, location)

(B)

person (id, name, address)
car (license, year, model, owner)
accident (reportnum, date, location, personid, car)

(C)

person (id, name, address)
car (license, year, model)
accident (reportnum, date, location, personid, car)

(A)

Q11: Create the relational
scheme

Person(name, age)
Painter(name, salary)

name -> Person.name
Painting(name, value)
owns(work, painter)

work -> Painting.name
painter -> Person.name

(C)

Painter

Painting

Owns

Person
ISA

name

name value salary

age

Person(name, age)
Painter(name, age, salary)
Painting(name, value)
owns(work, painter)

work -> Painting.name
painter -> Person.name

(A)

Person(name, age, salary)
salary can be NULL

Painting(name, value)
owns(work, painter)

work -> Painting.name
painter -> Person.name

(B)

Q12: which BCNF
decomposition is correct?

R(a, b, c, d, e)
a → b, c
c → d, e

R1(a, b, c)
a → b, c

R2(c, d, e)
c → d, e
c -> R1.c

(C)

R1(a, b, c)
a → b, c

R2(d, e)
d → e

(A)

R1(a, b, c, d, e)
a → b, c

R2(c)
c -> R1.c

(B)

Q13: what are the keys of R?
R(a, b, c, d, e, f)

a → b
a → c
c, d → e, f
b → e
c → a, b
1. {a, d}
2. {a, c}
3. {a, d, c}
4. {c, d}

Q14: What is the normal form of
this relation? Why?

• R = { A , B, C, D, E, F , G, H, I, J, K , M }
FD1: A → {J,K}
FD2: B →{D,E}
FD3: F →{G,H}
FD4: I →{C}

Q15: Decompose relation R
until satisfying the highest

normal form.

• R = { A , B, C, D, E, F , G, H, I, J, K , M }
FD1: A → {J,K}
FD2: B →{D,E}
FD3: F →{G,H}
FD4: I →{C}

The resulting decomposition of the relation R is:
R11(#A, J, K)
R12(#B, D, E)
R22(#F, G, H)
R31(#A, #B, F, #I, M) attribute I becomes part of
the PK as I determines C that is removed
R32(#I, C)

Independencies (INDs)
• Some attributes are not uniquely defined (as

with FDs), but are still independent of the values
of other attributes.
– In our example: code does not determine room, there

can be several rooms for a course. But the rooms a
course uses is independent of the teachers on the
course.

• X ↠ Y | Z states that from the point of view of X,
Y and Z are independent.
– Just X ↠ Y means that X’s relationship to Y is

independent of all other attributes.

(INDs are called Multivalued Dependencies (MVDs) in the book,
but no need to remember that name)

Independent how?
• An IND X ↠Y is an assertion that if two

tuples of a relation agree on all the
attributes of X, then their components in
the set of attributes Y may be swapped,
and the result will be two tuples that are
also in the relation.

• If (for some X) all values of Y (for that X)
can be combined with all values of Z (for
that X), then (from X) Y and Z are
independent.

Picture of IND X ↠Y | Z

X Y Z

equal

exchange

If two tuples have the same value for X, different
values for Y and different values for the Z attributes,
then there must also exist tuples where the values
of Y are exchanged, otherwise Y and Z are not
independent!

Implied tuples

If we have:

Courses(code, name, room, teacher)

code → name

code name room teacher
TDA357 Databases VR Mickey

TDA357 Databases HC1 Tweety

TDA357 Databases HC1 Mickey

TDA357 Databases VR Tweety

we must also have:

otherwise room and teacher would not be independent!

code ↠ room | teacher

Compare with joining

• Joining two independent relations yields a
relation with all combinations of values!

code room
TDA357 HC1

TDA357 VR

code teacher
TDA357 Mickey

TDA357 Tweety

code room teacher
TDA357 VR Mickey

TDA357 VR Tweety

TDA357 HC1 Mickey

TDA357 HC1 Tweety

Another example

Name Hobby Lang, LangSkill
Alice Gaming

Cooking
Hiking

Dutch, A
French, B
English, A
Swedish, C

Bob Fish
Skate

English, A

Name Hobby Lang LangSkill

Alice Gaming Dutch A

Alice Gaming French B

Alice Gaming English A

Alice Gaming Swedish C

Alice Cooking Dutch A

Alice Cooking French B

Alice Cooking English A

Alice Cooking Swedish C

Alice Hiking Dutch A

Alice Hiking French B

Alice Hiking English A

Alice Hiking Swedish C

Bob Fish English A

Bob Skate English Aname ↠ hobby | lang, langskill

• For a given name, hobby and {language, langskill} are independent
• For a given name, all combinations of hobby and {lang, langskill} must be able to exist

FDs are INDs
• Every FD is an IND (but of course not the other

way around). Compare the following cases:
– If X ↠ Y holds for a relation, then all possible values of

Y for that X must be combined with all possible
combinations of values for ”all other attributes” for that
X.

– If X → A, there is only one possible value of A for that
X, and it will appear in all tuples where X appears.
Thus it will be combined with all combinations of
values that exist for that X for the rest of the
attributes.

Example:
code name room teacher

TDA357 Databases VR Mickey

TDA357 Databases VR Tweety

TDA357 Databases HC1 Mickey

TDA357 Databases HC1 Tweety

There are four possible combinations of values for the attributes
room and teacher, and the only possible value for the name
attribute, ”Databases”, appears in combination with all of them.

There are two possible combinations of values for the attributes
name and room, and all possible values of the attribute
teacher appear with both of these combinations.

There are two possible combinations of values for the attributes
name and teacher, and all possible values of the attribute
room appear with both of these combinations.

code ↠ room

code ↠ teacher

code ↠ name

IND rules ≠ FD rules

• Complementation
– If X ↠ Y, and Z is all other attributes, then

X ↠ Z.
• Splitting doesn’t hold!!

– code ↠ room, #seats
•code ↠ room does not hold, since room and
#seats are not independent!

• None of the other rules for FDs hold either.

Example:
code name room #seats teacher

TDA357 Databases VR 216 Mickey

TDA357 Databases VR 216 Tweety

TDA357 Databases HC1 126 Mickey

TDA357 Databases HC1 126 Tweety

We cannot freely swap values in the #seats and room columns,
so neither

or

holds.

code ↠ room, #seats

code ↠ room

code ↠ #seats

Fourth Normal Form (4NF)

• The redundancy that comes from IND’s is
not removable by putting the database
schema in BCNF.

• There is a stronger normal form, called
4NF, that (intuitively) treats IND’s as FD’s
when it comes to decomposition, but not
when determining keys of the relation.

Fourth Normal Form
• 4NF is a strengthening of BCNF to handle

redundancy that comes from independence.
– An IND X ↠ Y is trivial for R if

• Y is a subset of X
• X and Y together = R

– Non-trivial X → A violates BCNF for a relation R if X
is not a superkey.

– Non-trivial X ↠ Y violates 4NF for a relation R if X is
not a superkey.

• Note that what is a superkey or not is still determined by
FDs only.

BCNF Versus 4NF

• Remember that every FD X → Y is also
a IND, X ↠Y.

• Thus, if R is in 4NF, it is certainly in
BCNF.
– Because any BCNF violation is a 4NF

violation.
• But R could be in BCNF and not 4NF,

because IND’s are “invisible” to BCNF.

INDs for validation

• Remember that FDs can:
– Allow you to validate your schema.
– Find ”extra” constraints that the basic

structure doesn’t capture.

• INDs ONLY validate your schema.
– No extra dependencies to be found.
– If your E-R diagram and translation are

correct, INDs don’t matter.

Example
R(code, name, period, room, seats, teacher)

code → name
code, period → room, teacher
room → seats
code, period ↠ room, seats
code, period ↠ teacher

(on blackboard)

Example:
E-R does not imply BCNF

Occupied

code

SeatIn

number

Of Lecture

time

Course

Roomname

In Student

ssnr

Students(ssnr)
Courses(code)
Rooms(name)
Lectures(course,time,room)
course -> Courses.code
room -> Rooms.name

Seats(room,number)
room -> Rooms.name

Occupied(course,time,room,number,student)
(course,time) -> Lectures.(course,time)
(room,number) -> Seats.(room,number)
student -> Students.ssnr

Quiz: What just went wrong?

Occupied

code

SeatIn

number

Of Lecture

time

Course

Roomname

In Student

ssnr

Redundancy!

Fix attempt #1

(room,number) -> Seats.(room,number) ??

We broke the reference! Now we could (in theory) book
seats that don’t exist in the room where the lecture is
given!

Students(ssnr)
Courses(code)
Rooms(name)
Lectures(course,time,room)
course -> Courses.code
room -> Rooms.name

Seats(room,number)
room -> Rooms.name

Occupied(course,time,number,student)
(course,time) -> Lectures.(course,time)
student -> Students.ssnr

Students(ssnr)
Courses(code)
Rooms(name)
Lectures(course,time,room)
course -> Courses.code
room -> Rooms.name

Seats(room,number)
room -> Rooms.name

Occupied(course,time,number,room,student)
(course,time) -> Lectures.(course,time)
(room,number) -> Seats.(room,number)
student -> Students.ssnr

Fix attempt #2

No longer
part of key!

No guarantee that the room where the seat is booked is
the same room that the lecture is in!

Same? We
can’t say!
Same? We
can’t say!

… and redundancy (3NF solution)

Students(ssnr)
Courses(code)
Rooms(name)
Lectures(course,time,room)
course -> Courses.code
room -> Rooms.name

Seats(room,number)
room -> Rooms.name

Occupied(course,time,number,room,student)
(course,time,room) ->

Lectures.(course,time,room)
(room,number) -> Seats.(room,number)
student -> Students.ssnr

Fix attempt #3

Same? We
can’t say!Same!

Still redundancy though (3NF solution). Possibly the
best we can do though.

Next time, Lecture 5

Database Construction –
SQL Data Definition Language

