Lecture 4

Database design IV

Normal Forms: Summary

Work flow

- **DRAW** your diagram of the domain.
- **TRANSLATE** to relations forming a schema
- **IDENTIFY** dependencies <u>from domain</u>!
- **RELATE** the dependencies to the schema, to find more constraints, and to validate your design.

Last time

- Functional dependencies (FDs) $X \rightarrow A$
- X⁺ = Closure of X = all derivable (from X) attributes
- F⁺ = Closure of F = all implied (from F) FDs
- Superkeys, keys and primary keys
- Boyce-Codd Normal Form (BCNF):
 - The LHS (X) of every non-trivial FD (X \rightarrow A) must be a superkey
- Decomposition:
 - Split up relations until normal form (e.g. BCNF) holds
 - Make sure to preserve recovery!!! No lossy joins allowed

Normal Forms?!

- Use normal forms to detect anomalies (e.g. Redundancy)
- Use decomposition to remove anomalies

(e.g. a database in 6NF is also in 5NF, etc.)

Normal Forms?!

BCNF Example

Decompose Courses into BCNF.

No BCNF violations left, so we're done!

<u>Tricky</u> example of BCNF decomposition:

Decompose:

Teaches(teacher, course)
 course -> Courses.code
GivenCourses(period, teacher)
 teacher -> Teaches.teacher

Quiz: What just went wrong?

Teaches(teacher, course)
 course -> Courses.code
GivenCourses(period, teacher)
 teacher -> Teaches.teacher

<u>teacher</u>	course
Niklas Broberg	TDA357
Graham Kemp	TDA357

<u>per</u>	<u>teacher</u>
2	Mickey
2	Tweety

	course	<u>per</u>	<u>teacher</u>	
_/	TDA357	2	Mickey	\
	TDA357	2	Tweety	

course, period \rightarrow teacher ??

Third Normal Form (3NF)

- 3NF is a weakening of BCNF that handles this situation.
 - An attribute is *prime* in relation R if it is a member of any key of R.
 - e.g. keys: {course, period} {teacher, period}

Prime attributes: {course, period, teacher}

$X \rightarrow A$ is in BCNF	$X \rightarrow A$ is in 3NF
iff either:	iff either:
• $X \rightarrow A$ is a trivial FD	• $X \rightarrow A$ is a trivial FD
 X is a superkey 	 X is a superkey
	 A-X has only prime attributes

Different algorithm for 3NF

- Given a relation R and a set of FDs F:
 - Compute the minimal basis of F.
 - Minimal basis means F⁺, except remove A \rightarrow C if you have A \rightarrow B and B \rightarrow C in F⁺.
 - Group together FDs with the same LHS.
 - For each group, create a relation with the LHS as the key.
 - If no relation contains a key of R, add one relation containing only a key of R.

Example:

Courses (code, period, name, teacher) $code \rightarrow name$ Two keys: code, period \rightarrow teacher {code, period} teacher \rightarrow code {teacher, period} teacher → name Prime attributes: Decompose: {code, period, teacher} Courses (code, name) GivenCourses (course, period, teacher) course -> Courses.code teacher -> Teaches.teacher Teaches (teacher, course) course -> Courses.code

GivenCourses contains a key for the original Courses relation, so we are done.

Earlier tricky example revisited:

```
GivenCourses(course, period, teacher)
  course -> Courses.code
  Two keys:
    {course, period → teacher
    teacher → course
```

Since all attributes are members of some key, i.e. all attributes are prime, there are no 3NF violations. Hence GivenCourses is in 3NF.

Quiz: What's the problem now then?

One 3NF solution for scheduler

Quiz: What's the problem now then?

Redundancy with 3NF

GivenCourses (course, period	d, teacher)
course -> Courses.code	
course, period \rightarrow teacher	Two keys: {course, period}
$\texttt{teacher} \rightarrow \texttt{course}$	{teacher, period}

GivenCourses is in 3NF. But teacher → course violates BCNF, since teacher is not a key. As a result, course will be redundantly repeated!

3NF vs BCNF

- Three important properties of decomposition:
 - 1. Recovery (loss-less join)
 - 2. No redundancy
 - 3. Dependency preservation
- 3NF guarantees 1 and 3, but not 2.
- BCNF guarantees 1 and (almost) 2, but not 3.
 - 3 can sometimes be recovered separately through "assertions" (costly). More on this later.

Almost?

Example:

code

TDA357

name

Databases

<u>code</u>	<u>room</u>	<u>teacher</u>
TDA357	VR	Mickey
TDA357	VR	Tweety
TDA357	HC1	Mickey
TDA357	HC1	Tweety

These two relations are in BCNF, but there's lots of redundancy!

Let's start from the bottom...

<u>code</u>	<u>room</u>
TDA357	HC1
TDA357	VR

<u>code</u>	<u>teacher</u>
TDA357	Mickey
TDA357	Tweety

<u>code</u>	<u>room</u>	<u>teacher</u>	<
TDA357	VR	Mickey	
TDA357	VR	Tweety	
TDA357	HC1	Mickey	
TDA357	HC1	Tweety	

- No redundancy before join
- The two starting tables are what we really want to have

Compare with E/R

QUIZ TIME!!

Q1: How many icecreams does one boy eat?

Q2: How many boys can eat one ice cream?

Q3: How many captains can a team have?

Q4: Can a player be a captain without belonging to that team?

Q5: How many lectures can be held in a room?

Q6: what is "cartoons"?

Isa relationships in an E/R diagram

Q7: Draw the ER diagram

- A person has a name, birthday and SSN.
- Names and birthdays are not unique

Q8: Draw the ER diagram

- A person has a name, birthday and SSN.
- Names and birthdays are not unique
- A person can create many paintings
- but paintings are created by exactly one person

Q9: Create the relational scheme

Q10: Create the relational scheme for the entities only

accident (<u>reportnum</u>, date, location, <u>personid</u>, car)

person (<u>id</u>, name, address) car (<u>license</u>, year, model, owner) accident (<u>reportnum</u>, date, location, personid, car) (C)

Q11: Create the relational scheme

Person(<u>name</u>, age) Painter(<u>name</u>, age, salary) Painting(<u>name</u>, value) owns(<u>work</u>, <u>painter</u>) work -> Painting.name painter -> Person.name (A)

Person(<u>name</u>, age, salary) salary can be NULL Painting(<u>name</u>, value) owns(<u>work</u>, <u>painter</u>) work -> Painting.name painter -> Person.name (B)

Person(<u>name</u>, age) Painter(<u>name</u>, salary) name -> Person.name Painting(<u>name</u>, value) owns(<u>work</u>, <u>painter</u>) work -> Painting.name painter -> Person.name (C)

Q12: which BCNF decomposition is correct? R(a, b, c, d, e) a→b, c

 $c \rightarrow d$, e

R1(<u>a</u> , b, c)	R1(<u>a</u> , b, c, d, e)	R1(<u>a</u> , b, c)
$a \rightarrow b$, c	a \rightarrow b, c	$a \rightarrow b, c$
R2(d, e)	R2 (<u>c</u>)	R2(<u>c</u> , d, e)
$d \rightarrow e$	c -> R1.c	$\overline{c} \rightarrow d$, e
(A)	(B)	c -> R1.c
		(C)

Q13: what are the keys of R?

R(a, b, c, d, e, f)

- $a \rightarrow b$
- $a \rightarrow c$
- c, d \rightarrow e, f
- $b \rightarrow e$
- $\boldsymbol{c} \rightarrow \boldsymbol{a}$, \boldsymbol{b}
- 1. $\{a, d\}$
- 2. {a, c}
- 3. {a, d, c}
- 4. $\{c, d\}$

Q14: What is the normal form of this relation? Why?

• R = { A , B, C, D, E, F , G, H, I, J, K , M } FD1: A \rightarrow {J,K} FD2: B \rightarrow {D,E} FD3: F \rightarrow {G,H} FD4: I \rightarrow {C} Q15: Decompose relation R until satisfying the highest normal form.

• R = { A , B, C, D, E, F , G, H, I, J, K , M } FD1: A \rightarrow {J,K} FD2: B \rightarrow {D,E} FD3: F \rightarrow {G,H} FD4: I \rightarrow {C} The resulting decomposition of the relation R is: R11(#A, J, K) R12(#B, D, E) R22(#F, G, H)

> R31(#A, #B, F, #I, M) attribute I becomes part of the PK as I determines C that is removed R32(#I, C)

Independencies (INDs)

- Some attributes are not uniquely defined (as with FDs), but are still independent of the values of other attributes.
 - In our example: code does not determine room, there can be several rooms for a course. But the rooms a course uses is *independent* of the teachers on the course.
- X * Y | Z states that from the point of view of X, Y and Z are independent.
 - Just X * Y means that X's relationship to Y is independent of all other attributes.

(INDs are called Multivalued Dependencies (MVDs) in the book, but no need to remember that name)

Independent how?

- An IND X *Y is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.
- If (for some X) all values of Y (for that X) can be combined with all values of Z (for that X), then (from X) Y and Z are independent.

If two tuples have the same value for X, different values for Y and different values for the Z attributes, then there must also exist tuples where the values of Y are exchanged, otherwise Y and Z are not independent!

Implied tuples

Courses (<u>code</u>, name, <u>room</u>, <u>teacher</u>)

 $\texttt{code} \rightarrow \texttt{name}$

code * room |

| teacher

If we have:

<u>code</u>	name	<u>room</u>	<u>teacher</u>
TDA357	Databases	VR	Mickey
TDA357	Databases	HC1	Tweety

we must also have:

TDA357	Databases	HC1	Mickey
TDA357	Databases	VR	Tweety

otherwise room and teacher would not be independent!

Compare with joining

<u>code</u>	<u>room</u>	
TDA357	HC1	
TDA357	VR	

<u>code</u>	<u>teacher</u>	
TDA357	Mickey	
TDA357	Tweety	

<u>code</u>	<u>room</u>	<u>teacher</u>
TDA357	VR	Mickey
TDA357	VR	Tweety
TDA357	HC1	Mickey
TDA357	HC1	Tweety

Joining two independent relations yields a relation with all combinations of values!

Another example

Name	Hobby	Lang	LangSkill
Alice	Gaming	Dutch	А
Alice	Gaming	French	В
Alice	Gaming	English	A
Alice	Gaming	Swedish	С
Alice	Cooking	Dutch	А
Alice	Cooking	French	В
Alice	Cooking	English	А
Alice	Cooking	Swedish	С
Alice	Hiking	Dutch	А
Alice	Hiking	French	В
Alice	Hiking	English	А
Alice	Hiking	Swedish	С
Bob	Fish	English	А
Bob	Skate	English	А

name » hobby | lang, langskill

- For a given name, hobby and {language, langskill} are independent
- For a given name, all combinations of hobby and {lang, langskill} must be able to exist

FDs are INDs

- Every FD is an IND (but of course not the other way around). Compare the following cases:
 - If X * Y holds for a relation, then all possible values of Y for that X must be combined with all possible combinations of values for "all other attributes" for that X.
 - If X → A, there is only one possible value of A for that X, and it will appear in all tuples where X appears. Thus it will be combined with all combinations of values that exist for that X for the rest of the attributes.

Example:

<u>code</u>	name	<u>room</u>	<u>teacher</u>
TDA357	Databases	VR	Mickey
TDA357	Databases	VR	Tweety
TDA357	Databases	HC1	Mickey
TDA357	Databases	HC1	Tweety

code » name	There are four possible combinations of values for the attributes room and teacher , and the only possible value for the name attribute, "Databases", appears in combination with all of them.
code » teacher	There are two possible combinations of values for the attributes name and room , and all possible values of the attribute teacher appear with both of these combinations.
code » room	There are two possible combinations of values for the attributes name and teacher , and all possible values of the attribute room appear with both of these combinations.

IND rules ≠ FD rules

- Complementation
 - If X * Y, and Z is all other attributes, then
 X * Z.
- Splitting doesn't hold!!
 - code * room, #seats
 - code * room does not hold, since room and #seats are not independent!
- None of the other rules for FDs hold either.

Example:

<u>code</u>	name	<u>room</u>	#seats	<u>teacher</u>
TDA357	Databases	VR	216	Mickey
TDA357	Databases	VR	216	Tweety
TDA357	Databases	HC1	126	Mickey
TDA357	Databases	HC1	126	Tweety

code * room, #seats

We cannot freely swap values in the #seats and room columns, so neither

code » room

or

```
code * #seats
```

holds.

Fourth Normal Form (4NF)

- The redundancy that comes from IND's is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats IND's as FD's when it comes to decomposition, but not when determining keys of the relation.

Fourth Normal Form

- 4NF is a strengthening of BCNF to handle redundancy that comes from independence.
 - An IND X * Y is trivial for R if
 - Y is a subset of X
 - X and Y together = R
 - Non-trivial $X \rightarrow A$ violates BCNF for a relation R if X is not a superkey.
 - Non-trivial X * Y violates 4NF for a relation R if X is not a superkey.
 - Note that what is a superkey or not is still determined by FDs only.

BCNF Versus 4NF

- Remember that every FD X → Y is also a IND, X *Y.
- Thus, if R is in 4NF, it is certainly in BCNF.
 - Because any BCNF violation is a 4NF violation.
- But R could be in BCNF and not 4NF, because IND's are "invisible" to BCNF.

INDs for validation

- Remember that FDs can:
 - Allow you to validate your schema.
 - Find "extra" constraints that the basic structure doesn't capture.
- INDs ONLY validate your schema.
 - No extra dependencies to be found.
 - If your E-R diagram and translation are correct, INDs don't matter.

Example

R(code, name, period, room, seats, teacher)

 $code \rightarrow name$

code, period \rightarrow room, teacher

 $room \rightarrow seats$

code, period * room, seats

code, period * teacher

(on blackboard)

Example: E-R does not imply BCNF

Quiz: What just went wrong?

Fix attempt #1

Students(<u>ssnr</u>) Courses(<u>code</u>) Rooms(<u>name</u>) Lectures(<u>course</u>, <u>time</u>, room) course -> Courses.code room -> Rooms.name Seats(<u>room, number</u>) room -> Rooms.name Occupied(<u>course</u>, <u>time</u>, <u>number</u>, student) (course, time) -> Lectures.(course, time) student -> Students.ssnr

```
(room,number) -> Seats.(room,number) ??
```

We broke the reference! Now we could (in theory) book seats that don't exist in the room where the lecture is given!

Fix attempt #2

No guarantee that the room where the seat is booked is the same room that the lecture is in!

... and redundancy (3NF solution)

Fix attempt #3

Still redundancy though (3NF solution). Possibly the best we can do though.

Next time, Lecture 5

Database Construction – SQL Data Definition Language