
Database design

The Entity-Relationship model

Lecture 2

Course Objectives

Design

Construction

Application
Usage

The Entity-Relationship approach

• Design your database by drawing a picture
of it – an Entity-Relationship diagram
– Allows us to sketch the design of a database

informally (which is good when
communicating with customers)

• Use (more or less) mechanical methods to
convert your diagram to relations.
– This means that the diagram can be a formal

specification as well

ER BASICS

E/R Model

• Three main element types:
– Entity sets
– Attributes, and
– Relationships

Entity Sets
• Entity = object that exists and distinguishable

from other entities
– course, room, person, customers, books, etc.

• Entity set = collection of similar entities
– all courses, all rooms etc.

• Entities are drawn as rectangles

Course
Books

Movies

Stars

Attributes

• Entity sets have the same attributes
(though not the same values)

• Attributes are drawn as ovals connected to
the entity by a line.

E1Att1

Att3

Att2

Keys are
underlined

Relationships

• A relationship is an association among
several entities

• Drawn as a diamond between the related
entities, connected to the entities by lines.

• Note: Relationship ≠ Relation!!

E1 E2R1

Examples:

• A course has lectures in a room.
• A course is related to a room by the fact that the course has lectures

in that room.

• Both entities are related through the relationship named ”R1”

Coursename

code

teacher

Room

name

#seatsR1

Example:

• A course has lectures in a room.
• A course is related to a room by the fact that the course has lectures

in that room.

• A relationship is often named with a verb form (LecturesIn)

Coursename

code

teacher

Room

name

#seatsLecturesIn

Example:

• A course has three attributes – the unique course code,
a name and the name of the teacher.

• All course entities have values for these three attributes,
e.g. (TDA357, Databases, Mickey).

Coursename

code

Keys are
underlined

teacher

Translation to relations
• An E-R diagram can be mechanically translated

to a relational database schema.
• An entity becomes a relation, the attributes of the

entity become the attributes of the relation, keys
become keys.

Coursename

code

Courses(code, name, teacher)

teacher

What?

Translation to relations

• An E-R diagram can be mechanically
translated to a relational database schema.

• An entity becomes a relation, the attributes
of the entity become the attributes of the
relation, keys become keys.

Coursename

code

Courses(code, name, teacher)

teacher Books(title, gender)
Customers(name, address)
Movies(title, star, lenght)

A note on naming policies

• My view: A rectangle in an E-R diagram
represents an entity, hence it is put in
singular (e.g. Course).
– Fits the intuition behind attributes and

relationships better.
• The book: A rectangle represents an entity

set, hence it is put in plural (e.g. Courses)
– Easier to mechanically translate to relations.

Translation to relations

• A relationship between two entities is
translated into a relation, where the
attributes are the keys of the related
entities.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Courses(code, name, teacher)
Rooms(name, #seats)
LecturesIn(code, name)What?

Translation to relations

• A relationship between two entities is
translated into a relation, where the
attributes are the keys of the related
entities.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Courses(code, name, teacher)
Rooms(name, #seats)
LecturesIn(code, name)

References

• We must ensure that the codes used in
LecturesIn matches those in Courses.
– Introduce references between relations.
– e.g. the course codes used in LecturesIn

reference those in Courses.

Courses(code, name, teacher)
Teacher(name, #seats)
LecturesIn(code, name)

Courses(code, name, teacher)
Rooms(name, #seats)
LecturesIn(code, name)
code -> Courses.code
name -> Rooms.name

References

”Foreign” keys

• Usually, a reference points to the key of
another relation.
– E.g. name in LecturesIn references the key
name in Rooms.

– name is said to be a foreign key in
LecturesIn.

Quiz

Suppose we want to store the number of
times that each course has a lecture in a
certain room. How do we model this?

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Attributes on relationships

• Relationships can also have attributes.
• Represent a property of the relationship

between the entities.
– E.g. #times is a property of the relationship

between a course and a room.

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Translation to relations
• A relationship between two entities is translated

into a relation, where the attributes are the keys
of the related entities, plus any attributes of the
relationship.

Courses(code, name, teacher)
Room(name, #seats)
LecturesIn(code, name, #times)
code -> Courses.code
name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

What?

Translation to relations
• A relationship between two entities is translated

into a relation, where the attributes are the keys
of the related entities, plus any attributes of the
relationship.

Courses(code, name, teacher)
Room(name, #seats)
LecturesIn(code, name, #times)
code -> Courses.code
name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Quiz
Why could we not do the same for weekday?

• Not a property of the relationship – a course can have
lectures in a given room on several weekdays!

• A pair of entities are either related or not.

Coursename

code

teacher

Room

name

#seatsLecturesIn

weekday

Relationship (non-)keys

• Relationships have no keys of their own!
– The ”key” of a relationship is the combined

keys of the related entities
– Follows from the fact that entities are either

related or not.
– If you at some point think it makes sense to

put a key on a relationship, it should probably
be an entity instead.

Multiway relationships

• A course has lectures in a given room on
different weekdays.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

• Translating to relations:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Courses(code, name, teacher)
Rooms(name, #seats)
Weekdays(day)
LecturesIn(code, name, day)
code -> Courses.code
name -> Rooms.name
day -> Weekdays.day

What?

• Translating to relations:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Courses(code, name, teacher)
Rooms(name, #seats)
Weekdays(day)
LecturesIn(code, name, day)
code -> Courses.code
name -> Rooms.name
day -> Weekdays.day

ER Cheatsheet 1

ENTITY = noun/thing
• Exist on their own
• Have their own keys

RELATIONSHIP = verb
• Only exist in relation to an entity
• No own keys, only foreign keys
• Reference the entity keys with ->

HasLecturesIn(code,name,day,#times)
code -> Course.code
name -> Room.name
day -> Weekday.day

Course(code, name, teacher)
Room(name, #seats)
Weekday(day)

Entity Relationship

Both entities and relationships can have attributes!

attribute key

CARDINALITY

Many-to-many relationships
• Many-to-many (n-to-n, many-many)

relationships
– Each entity in either of the entity sets can be

related to any number of entities of the other
set.

– A course can have lectures in many rooms.
– Many courses can have lectures in the same room.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Many-to-one relationships
• Many-to-one (n-to-1, many-one)

relationships
– Each entity on the ”many” side can only be

related to (at most) one entity on the ”one”
side.

– Courses have all their lectures in the same room.
– Many courses can share the same room.

Coursename

code

teacher

Room

name

#seatsResidesIn

Arrow means
”at most one”

Many-to-”exactly one”

• All entities on the ”many” side must be
related to one entity on the ”one” side.
– This is also known as total participation

– All courses have all their lectures in some room.
– Many courses can share the same room.

Coursename

code

teacher

Room

name

#seatsResidesIn

Rounded arrow
means ”exactly one”

One-to-one relationships
• One-to-one (1-to-1, one-one) relationships

– Each entity on either side can only be related
to (at most) one entity on the other side.

– Courses have all their lectures in the same room.
– Only one course in each room.
– Not all rooms have courses in them.

Coursename

code

teacher

Room

name

#seatsResidesIn

Translating multiplicity

• A many-to-many relationship between two
entities is translated into a relation, where
the attributes are the keys of the related
entities, and any attributes of the relation.

Courses(code, name, teacher)
Rooms(name, #seats)
LecturesIn(code, name, #times)
code -> Courses.code
name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Translating multiplicity

• A X-to-”exactly one” relationship between
two entities is translated as part of the
”many”-side entity.

Coursename

code

teacher

Room

name

#seatsResidesIn

Courses(code, name, teacher, room)
room -> Rooms.name

Rooms(name, #seats)What?

Translating multiplicity

• A X-to-”exactly one” relationship between
two entities is translated as part of the
”many”-side entity.

Coursename

code

teacher

Room

name

#seatsResidesIn

Courses(code, name, teacher, room)
room -> Rooms.name

Rooms(name, #seats)

How do we translate an X-to-one (meaning
”at most one”) relationship?

or ?

Quiz

Coursename

code

teacher

Room

name

#seatsResidesIn

Courses(code, name, teacher, room)
Room(name, #seats)

Courses(code, name, teacher)
Room(name, #seats)
ResidesIn(code, room)

Aside: the NULL symbol
• Special symbol NULL means either

– we have no value, or
– we don’t know the value

• Use with care!
– Comparisons and other operations won’t

work.
– May take up unnecessary space.

Translation comparison

– Will lead to NULLs for courses that have no room.
– Can sometimes be preferred when not having a room is an

uncommon exception to the rule.
– Reduces the need for joins.

Courses(code, name, teacher, room)
Rooms(name, #seats)

Courses(code, name, teacher)
Rooms(name, #seats)
ResidesIn(code, room)

– Safe translation - no NULLs anywhere.
– May lead to duplication of the course code.
– May lead to more joins.
– Default translation rule, use unless you have a good reason not

to.

Note that ”room”
is not a key here

(why not?)

Bad E-R design

Coursename

code

teacher

Room

name

#seatsResidesIn

room

• Room is a related entity – not an attribute as well!

• E-R modelling error #1 – don’t do this!!

Attribute or related entity?

What about teacher? Isn’t that an entity?

Coursename

code

Room

name

#seatsResidesIn

Teacher

HeldBy

name

Quiz!

When should we model something as an
entity in its own right (as opposed to an
attribute of another entity)?

At least one of the following should hold:
• Consists of more than a single (key) attribute
• Used by more than one other entity
• Part of an X-to-many relation as the many side
• Generally entity-ish, is important on its own

Quiz!

• Translate this E-R diagram to relations

Courses(code, name, teacher)
Rooms(name, #seats)
LecturesIn(course, room, #times)
course -> Courses.code
room -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Relationships to ”self”

• A relationship can exist between entities of
the same entity set.

• Use role annotations for attributes.

Room

name

#seats

NextTo

left right

Rooms(name, #seats)
NextTo(left, right)
left -> Rooms.name
right -> Rooms.name

ER Cheatsheet 2

*
==1

planet star
systemisPartOf

A planet is part of exactly 1 starsystem
A starsystem can have several planets

Starsystem(name)
Planet(name, system)

system -> Starsystem.name

A house can be owned by several people
A person can own several houseshouse ownedBy person* *

Person(name)
House(address)
OwnedBy(owner, property)

owner -> Person.name
property -> House.address

A castle is ruled by 0 or 1 king
A king can rule several castlescastle ruledBy king* 0..1

King(name)
Castle(name)
RuledBy(castle, king)

castle -> Castle.name
king -> King.name

King(name)
Castle(name, king)

king -> King.name
(king can be NULL!)

… or ...

Break! In part 2:

weak entities, subclasses,
”multivalued” and ”flag” attributes

SPECIAL RELATIONSHIPS
Subclassing and weak entities

Subclassing
• Subclass = sub-entity = special case.
• A subclass is a subset of an entity set.
• More attributes and/or relationships.
• A subclass shares the key of its parent.

• Drawn as an entity connected to the superclass
by a special triangular relationship called ISA.
Triangle points to superclass.
– ISA = ”is a”

Example:

– A computer room is a room.
– Not all rooms are computer rooms.
– Computer rooms share the extra property that

they have a number of computers.

Coursename

code

teacher

Room

name

#seatsClassesIn

ComputerRoom #computers

ISA

Subclass/Superclass Hierarchy

• We assume that subclasses form a tree
hierarchy.
– A subclass has only one superclass.
– Several subclasses can share the same

superclass.
• E.g. Computer rooms, lecture halls, chemistry labs

etc. could all be subclasses of Room.

Translating ISA to relations

• Standard approach:
– An ISA relationship is a standard one-to-

”exactly one” relationship. Each
subclass becomes a relation with the
key attributes of the superclass
included.

– Also known as the E-R approach.

The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)
ComputerRooms(name, #computers)

name -> Rooms.name

name #seats
VR 216

ED6225 52

name #computers
ED6225 26

What?

The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)
ComputerRooms(name, #computers)

name -> Rooms.name

name #seats
VR 216

ED6225 52

name #computers
ED6225 26

Alternate ISA translations

• Two alternate approaches
– NULLs: Join the subclass(es) with the

superclass. Entities that are not part of the
subclass use NULL for the attributes that
come from the subclass.

– Object-oriented: Each subclass becomes a
relation with all the attributes of the
superclass included. An entity belongs to
either of the two, but not both.

The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers
VR 216 NULL

ED6225 52 26

What?

The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers
VR 216 NULL

ED6225 52 26

The object-oriented (OO) approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)
ComputerRooms(name, #seats,

#computers)

name #seats
VR 216

name #seats #computers
ED6225 52 26

What?

The object-oriented (OO) approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)
ComputerRooms(name, #seats,

#computers)

name #seats
VR 216

name #seats #computers
ED6225 52 26

Comparison – E-R
• E-R approach

– Always works.
– Use unless you have a good reason not to.

Comparison – OO
• OO approach

– Good when searching for general information
about entities in a subclass only.

• ”List the number of seats in all computer rooms”
– Does not work if superclass has any

relationships.
• An entity belonging to the subclass does not

belong to the superclass as well, so foreign keys
would have no single table to refer to.

Comparison – NULLs
• NULLs approach

– Could save space in situations where most
entities in the hierarchy are part of the
subclass (e.g. most rooms have computers in
them).

– Reduces the need for joins.
– Not suited if subclass has any relationships.

• Would lose the constraint that only the entities in
the subclass can participate in the relationship.

Weak entities
• Some entities depend on other entities.

– A course is an entity with a code and a name.
– A course does not have a teacher, rather it

has a teacher for each time the course is
given.

– We introduce the concept of a given course,
i.e. a course given in a particular period. A
given course is a weak entity, dependent on
the entity course. A given course has a
teacher.

Weak entities
• A weak entity is an entity that depends on

another entity for help to be ”uniquely” identified.
– E.g. an airplane seat is identified by its number, but is

not uniquely identified when we consider other
aircraft. It depends on the airplane it is located in.

• Drawn as a rectangle with double borders.
• Related to its supporting entity by a supporting

relationship, drawn as a diamond with double
borders. This relationship is always many-to-
”exactly one”.

Weak entities in E-R diagrams

Example:

GivenCourse

teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given
discriminator
(sometimes
dotted line)

Courses(code, name)
GivenCourses(course, period, teacher)
course -> Courses.code

LecturesIn(course, period, room)
(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

Rooms(name, #seats)

What?

Translating to relations:

GivenCourse
teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

Courses(code, name)
GivenCourses(course, period, teacher)
course -> Courses.code

LecturesIn(course, period, room)
(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

Rooms(name, #seats)

Translating to relations:

GivenCourse
teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

Multiway relationships as WEs

• Multiway relationships can be transformed
away using weak entities
– Subtitute the relationship with a weak entity.
– Insert supporting relationships to all entities

related as ”many” by the original relationship.
– Insert ordinary many-to-one relationships to

all entities related as ”one” by the original
relationship.

Example:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Room

name

#seats

On

Of

Coursename

code

teacher

Weekday

day

LectureIn

In

What’s the point?

• Usually, relationships work just fine, but in
some special cases, you need a weak
entity to express all multiplicity constraints
correctly.

• A weak entity is needed when a part of an
entity’s key is a foreign key.

THINGS NOT TO DO…
“Multivalued” attributes and “flag” attributes

”Multivalued” attributes

Course

code

name teacherteacher

Courses(code,name)
HeldBy(code,teacher)
code -> Courses.code

Course

code

name

teacher

Teacher

HeldBy

Courses(code,name)
Teachers(teacher)
HeldBy(code,teacher)
code -> Courses.code
teacher -> Teachers.teacher

”Multivalued” attributes
• Inflexible if you later want more attributes on

teachers.
• No guarantees against e.g. spelling errors of

teacher names.
– less flexible to insert a constraint on what values are

allowed than to use an extra table.
• Tables are cheap – references are cheap

– No reason NOT to use an entity.

• Rule of thumb: Don’t use multivalued attributes!!

”Flag” attributes on relationships

Course

code

name

teacher

Teacher

HeldByresponsible

Course

code

name

teacher

Teacher

ResponsibleAssistant

vs.

”Flag” attributes on relationships
• Less intuitively clear.
• Inflexible if later you need more roles.
• Tables are cheap, union of two tables is a cheap

operation (O(1)) – filtering can be expensive (O(n))!

• Only benefit: automatic mutual exclusion (a teacher can
only be either responsible or an assistant).
– If important, can be recovered via assertions (costly).

• Rule of thumb: Don’t use flag attributes on relationships!

ER cheatsheet 3

ISA

Subclassing
sub-entity extends super-entity
- ER-approach
- NULL-approach
- OO-approach

Weak entities, identifying
relationship
Weak entity “is part of”
entity
- Composite key with

foreign key

“multivalued” attributes

Yes/no

“flag” attributes on
relationships

Don’t do this

Next time, lecture 3

Functional Dependencies
BCNF
3NF

