Lecture 1

Databases TDA357/DIT620

Pablo Picazo pablop@chalmers.se

What's a database anyway?

A database is ...

- Structured
- Persistant
- Changable
- Digital
- · True to integrity constraints

DBMS

Database

==

Data collection managed by a specialized software called a Database Management System (DBMS)

Why a whole course in Databases?

Banking, ticket reservations, customer records, sales records, product records, inventories, employee records, address

Databases de arent records, course plans, schedules,

su**everywhere**!a,

tables, news archives, sports results, ecommerce, user authentication systems, web forums, www.imdb.com, the world wide web, ...

Examples

- Banking
 - Drove the development of DBMS
- Industry
 - $\boldsymbol{-}$ Inventories, personnel records, sales \dots
 - Production Control
 - Test data
- Research
 - Sensor data (25GB/h for a car)
 - Geographical data
 - Laboratory information management systems
 - Biological data (e.g. genome data)

Why not a file system?

File systems are

- Structured
- Persistant
- · Changable
- Digital

... but oh so inefficient!

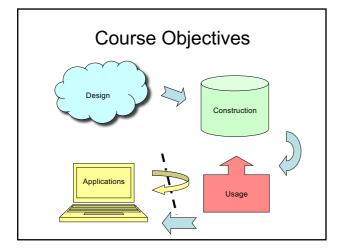
Modern DBMS

- · Handle persistent data
- Give efficient access to huge amounts of data
- · Give a convenient interface to users
- · Guarantee integrity constraints
- · Handle transactions and concurrency

Database Management Systems

- · Hierarchical databases:
 - "Easy" to design if only one hierarchy
 - Efficient access
 - Low-level view of stored data
 - Hard to write queries
- · Network databases:
 - "Easy" to design
 - Efficient access
 - Low-level view of stored data
 - Very hard to write queries

Database Management Systems


- · Relational databases:
 - Hard to design
 - Use specialized storage techniques
 - Efficient access
 - Provides high-level views of stored data based on mathematical concepts
 - Easy to write queries
 - Not all data fit naturally into a tabular structure
- Other databases ("NoSQL"):
 - Some based on semantic data models
 - Object-oriented database management systems (OODBMS)
 - XML-based, Key-value based, ...

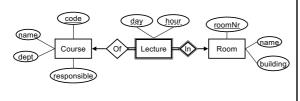
Relational DBMSs

- · Very simple model
- · Familiar tabular structure
- Has a good theoretical foundation from mathematics (set theory)
- · Industrial strength implementations, e.g.
 - Oracle, Sybase, MySQL, PostgreSQL, Microsoft SQL Server, DB2 (IBM mainframes)
- · Large user community

Database system studies

- 1. Design of databases, e.g.
 - Entity-Relationship modelling
 - relational data model
 - dependencies and normalisation
 - XML and its data model
- 2. Database programming, e.g.
 - relational algebra
 - data manipulation and querying in SQL
 - application programs
 - querying XML
- ${\it 3. \ Database \ implementation, e.g.}$
 - indexes, transaction management, concurrency control, recovery, etc.

Course Objectives – Design


When the course is through, you should

 Given a domain, know how to design a database that correctly models the domain and its constraints

"We want a database that we can use for scheduling courses and lectures. This is how it's supposed to work: ..."

Course Objectives - Design

- · Entity-relationship (E-R) diagrams
- · Functional Dependencies
- Normal Forms

Course Objectives - Construction

When the course is through, you should

 Given a database schema with related constraints, implement the database in a relational DBMS

Courses(<u>code</u>, name, dept, examiner)
Rooms(<u>roomNr</u>, name, building)
Lectures(<u>roomNr</u>, day, hour, course)
roomNr -> Rooms.roomNr
course -> Courses.code

Course Objectives - Construction

SQL Data Definition Language (DDL)

```
CREATE TABLE Lectures (
lectureId INT PRIMARY KEY,
roomId REFERENCES Rooms(roomId),
day INT check (day BETWEEN 1 AND 7),
hour INT check (hour BETWEEN 0 AND 23),
course REFERENCES Courses(code),
UNIQUE (roomId, day, hour)
):
```

Course Objectives - Usage

When the course is through, you should

- Know how to query a database for relevant data using SQL
- Know how to change the contents of a database using SQL

"Add a course 'Databases' with course code 'TDA357', given by ..."

"Give me all info about the course 'TDA357'"

Course Objectives - Usage

• SQL Data Manipulation Language (DML)

```
INSERT INTO Courses VALUES
('TDA357', 'Databases','CS', Mickey');
```

· Querying with SQL

SELECT * FROM Courses WHERE code = 'TDA357';

Course Objectives – Applications

When the course is through, you should

 Know how to connect to and use a database from external applications

"We want a GUI application for booking rooms for lectures ..."

Course Objectives – Applications

JDBC

```
// Assemble the SQL command for inserting the
// newly booked lecture.
String myInsert = "INSERT ENTO Lectures
+ "VALUES (" + room + ", ",
+ day + ", " + leur + ", " + course + ")";

// Execute the SQL command on the database
Statement stmt = myDbConn.createStatement();
stmt.executeUpdate(myInsert);
```

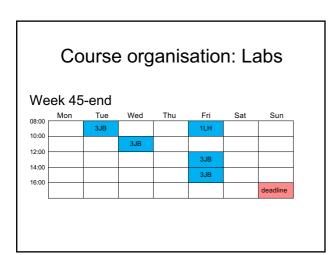
Course Objectives - Summary

You will learn how to

- design a database
- · construct a database from a schema
- use a database through queries and updates
- use a database from an external application

Course organisation

- 7 weeks
 - (Week 44-50: 31 October 15 December)
- Lectures
- · Exercise sessions
- · Project with lab sessions
- Exam


Course organisation: Lectures

Week 44 (This week)

00:80	Mon	Tue	Wed	Thu	Fri
10:00		JB	JB		
12:00		JB			JB
14:00					
16:00					

Course organisation: Exercises Week 45-end Mon Tue Wed Thu Fri 1JB 1JB+1LH 14:00 14:00 16:00

About the rooms and campuses

- Large amount of students (~200)
- Necessarily splitting over several rooms for labs/exercises
- Rooms change often! Check your schedules
- Doodles!!

Who prefers exercise/lab session at Johanneberg/Lindholmen?

Lab Assignment

- · Write a "student portal" application in Java
 - Part I: Design
 - Given a domain description, design a database schema using an E-R diagram.
 - Part II: Design
 - Given a domain description, find and act on the functional dependencies of the domain to fix the schema from Part I.
 - Part III: Construction and Usage
 - Implement the schema from Part II in PostgreSQL.
 - Insert relevant data.
 - Create views to support key operations.
 - Part IV: Construction
 - Create triggers to support key operations.
 - Part V: Interfacing from external Application (tests objective S7)
 - Write a Java application that uses the database from Part III.

Lab Assignment (cont.)

- The assignment is graded and is a requirement to pass the course
- Groups of 2 students
- First 4 tasks are graded using the Fire system, deadline each time on Sunday
- The final task is assessed on/before the last lab session.

As soon as you have the Assignment, make a demo before the last session

Course Book

"Database Systems:
The Complete Book, 2E",
by Hector Garcia-Molina,
Jeffrey D. Ullman,
and Jennifer Widom
Approx. chapters 1-12

Alternative versions

"First Course in Database Systems, A, 3/E" by Jeffrey D. Ullman and Jennifer Widom

"Database Systems: The Complete Book", by Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom

Approx. chapters 1-8

Web Resources

- Website (Google TDA357, first hit)
- http://www.cse.chalmers.se/edu/course/TDA357/HT2017/
 - Slides of lectures + prev years (even course notes)
 - Exercise sessions + solutions
 - Lab assignment
 - Extra information
 - Old exam questions and solutions
- Google group

https://groups.google.com/group/tda357-ht2017

- Announcements, questions/answers, other information
- Sign up TODAY!

Teaching staff

- Lecturer/Course responsible: Pablo Picazo
- Professor/Examiner: Graham Kemp
- Course assistants:
 - Markus Aronsson (mararon@chalmers.se)
 - Herbert Lange (herbert.lange@cse.gu.se)
 - Timon Lapawczyk (timon.lapawczyk@gmail.com)
 - Selpi (selpi@chalmers.se)
 - Andrea Vezzosi (vezzosi@chalmers.se)
 - Hamid Ebadi (hamid.ebadi@chalmers.se)
 - Evgeny Kotelnikov (evgenyk@chalmers.se)

TODO for you

- · Locate the course website
- · Sign up the Google group
- · Find a lab partner

Failure is the key to success Success is made of 99% failure

make lots of mistakes and learn from them

but stop before the exam!

Break! In part 2:

Relations