
Solutions for week 6, Cryptography Course - TDA 352/DIT 250

In this weekly exercise sheet: you will go through for all the different topics that we have seen
during the course. Almost every question can be present in the exam.

Easy

1. Definition (Semantic Security Game):
Let (E,D) be a encryption scheme on (M,K, C). Let A be an Adversary and C be the Challenger.
We define the semantic security game as the game with the following procedure:

(a) A challenges C in the semantic security game

(b) A chooses m0,m1 with len(m0) = len(m1), from some distribution D over M
(c) A sends to C the messages m0 and m1

(d) C selects at random a secret key k
R← K

(e) C flips a random coin, i.e. C picks b ∈ {0, 1} uniformly at random

(f) C encrypts mb using k and obtains the ciphertext c, i.e. c = Enc(k,mb)

(g) C sends c to A
(h) A uses a probabilistic polynomial time (PPT) algorithm to obtain a guess b′ for which bit C chose

in step (e)

(i) A output his guess b′

The attacker A wins the semantic security game if b = b′.
As a diagram:

A m0,m1
D←M (b)

PPT
Algorithm

Output: guess b′

C b
R← {0, 1} (d)

k
R← K (e)

c = Enc(k,mb) (f)

m0,m1 (c)

c

time

Definition (Semantic Security):
Let (E,D) be a encryption scheme on (M,K, C). The encryption scheme is semantically secure if
for all the PPT adversaries A, it holds that

Pr(b′ = b) ≤ 1

2
+ ε where ε is a negligible value

Definition: One Time Pad (OTP)
The OTP hasM = K = C = {0, 1}n where M is the message-space, K is the key-space and C is the
ciphertext-space.
Let m ∈M, k ∈ K and c ∈ C. The OTP encryption algorithm is defined as

Enc(k,m) = m⊕ k
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The OTP decryption algorithm is defined as

Dec(k, c) = c⊕ k

Proof: OTP is perfect secret.
To prove that the OTP is semantic secure, you should observe that M = K = C. This implies
|M| = |K|.
Therefore, we just need to prove that for every two messages m0,m1 and for every ciphertext c, it
holds that Pr(Enc(k,m0) = c) = Pr(Enc(k,m1) = c) for some random key k ∈ K.
We can rewrite Enc(k,m0) = c as k ⊕m0 = c, from which we have k = c ⊕m0 (a similar reasoning
hold for m1).
Let us fix m0 and c, then Pr(Enc(k,m0) = c) = Pr(k = c ⊕ m0) = ( the probability of choosing
randomly the keys k such that k = c⊕m0 ) = 1

|K| .

The same reasoning (and probability) holds for m1. This concludes the proof of the fact that the OTP
encryption scheme is perfect secret.

Using the tricks explained in the solution of exercise 6:

• If b = 0, we have c = k ⊕m0

• If b = 1, we have c = k ⊕m1

We don’t have any strange behaviour. We don’t have plaintext informations. We don’t have repeti-
tions. We don’t have any clue on how to divide the problem.

Trick 5: if you not able to find anything new, try combining what you have. A lot of times, you
should look at your information from a different point of view: you should combine what you know
and see if this tells you something new.

We know that the OTP is perfectly secure and so Pr(k ⊕m0 = c) = Pr(k ⊕m1 = c) for any pair of
(distinct) messages. This equality means that there exists an unique key k0 such that m0⊕c = k0 and
an unique k1 such that m1 ⊕ c = k1. Since m0 and m1 are different, also k0 and k1 must be different.

Going back to the exercise, we can compute c⊕m0 (where c is the ciphertext returned by the challenger
C). According to the value of b, we can distinguish the following two cases:

• b = 0, in this case c⊕m0 = k

• b = 1, in this case c⊕m0 = k ⊕m1 ⊕m0

Since m0 6= m1, the two messages should be different in at least 1 bit. Without loss of generality, let
us assume that the bit in which m1 differs from m2 is the first bit.
Lets denote the first bit of the key k as k̂ ∈ {0, 1}. Observe that the first bit of m1 ⊕m0 will be 1
since it is the bit in which they differ.
We have

• If we compute k̂, b′ = 0

• If we compute k̂ + 1, b′ = 1

Since k is uniformly and randomly generated, we have that every bit of k will be uniformly and
randomly generate (try to think using exercise 7a and the “coin flipping”). This means that k̂ is

uniform and random in {0, 1}. So the probability Pr(k̂ = 0) = Pr(k̂ = 1) = 1
2 .

Since we are trying to predict the result of a random coin flip, we can conclude that our best guess
for b′ is flip a coin, i.e. 1

2 . So we (the adversary) have no non-negligible advantage.
Therefore the OTP cipher is semantically secure.

2. Definition: A function F : K ×M → C is a Pseudo Random Function if the function Fk = F(k, ·),
for a uniformly random selected key k

R← K is indistinguishable from a function chosen uniformly ar
random from the set of all possible functions from M to C.

Definition: A block cipher is a cipher (E,D) over K,M, C with M = C for which
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• D(k,E(k,m)) = m for all m ∈M
• It has a round structure that is iterated for a fixed number r of time

• It has a key-scheduler that expands the secret key k into r-round keys

Let (E,D) be a block cipher.
ECB: in ECB, the data M is divided into blocks {mi} and each block is separately encrypted using
E and the key k. If we denote with ci the i-th encrypted block, we have that

ci = E(k,mi) mi = D(k, ci)

CBC: in CBC, the data M is divided in blocks {mi}, a random string initialization vector IV is

chosen and each block is encrypted with E and a key k. The IV is placed at the beginning of the
ciphertext. If we denote with ci the i-th encrypted block, we have that

c0 = E(k, IV ⊕m0) ci = E(k, ci−1 ⊕mi) m0 = D(k,m0)⊕ IV mi = D(k, ci)⊕ ci−1

3. Definition:
Let λ be the security parameter. Let (Gen,Enc,Dec) be the algorithm for the (textbook) RSA public
key encryption scheme defined as

• Gen(λ):

– Choose at random two distinct primes p, q with λ bits and compute N = pq and φ(N) =
(p− 1)(q − 1)

– Choose at random a number e
R← Zφ(N) coprime with φ(n) and compute d such that d ≡ e−1(

mod φ(N))

– The secret key is sk = (N, d) and the public key is pk = (N, e)

• Enc(pk,m): Compute c ≡ me( mod N)

• Dec(sk, c): Compute m ≡ cd( mod N)

The following two assumption are considered computationally secure:

• Assumption Factorization:
Given a composite integer N , the factoring problem is to find two positive integers p, q such that
pq = N .

• Assumption Discrete Logarithm for RSA in chosen plaintext attack:
Given N , the encryption c of a message m. The discrete logarithm is to find d such that cd ≡ m(
mod N).

The discrete logarithm assumption is considered computationally hard since it is not known if exists
an efficient algorithm to compute the discrete logarithm.
A different computational hard assumption is the integer factorization.
The RSA encryption scheme achieve security over these two assumptions.

4. Definition: An hash function H : {0, 1}∗ → {0, 1}n is a secure hash function (or collision resistant)
if for all probabilistic polynomial-time adversaries A defined as

• A knows H

• A outputs x, x′

• A find a collision if and only if x 6= x′ and H(x) = H(x′)

it holds that
Pr(A find a collision for H) < ε ε negligible

Hash functions are used for authentication and data integrity and these functions are used in different
ways to achieve, for example:

• Data integrity. Adding the result of the hash function at the end of a message so that an attacker
cannot change the content of the message.
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• Authentication. Hash functions are used in public key infrastructure (PKI) with public key
encryption scheme, to achieve the authentication of a user using certificates.

• Secure communication established. In TLS/SSL, hash functions are used to ensure that all the
steps of the communication are not tampered.

• Password managing. Hash function are commonly used in password managing and checking.

• Pseudo Random Function. Since for secure hash functions is hard to find a collision, hash
functions are sometimes used as PRF.

Medium

5. • Unconditional security. The cryptosystem cannot be broken even by an Adversary with
unlimited computational power.

• Computational security. The best known attack to the cryptosystem is unfeasible in practice.

• Provable security. An Attacker that is able to break the cryptosystem, could be used also to
solve some well-known difficult problem (thus to break some hardness assumption).

The same definitions can be seen in this way:

• Unconditional security. A mathematical proof can prove that it is unfeasible to break the
cryptosystem. In this class we can find Secret Sharing schemes that are unconditionally secure if
the adversary has less keys that the threshold of the scheme. In this case, the security is based
only on the mathematical impossibility to reconstruct the right polynomial.

• Computational security. The cryptosystem has a known attack but executing the attack
is computationally expensive (economically, for example) and it may take a long time (several
thousands of years). In this class we can find brute force attacks that tries all the possible keys
and, generally, are computationally unfeasible.

• Provable security. The cryptosystem is based on mathematical problems. The problems are
assumed as hard problem since it is not known any efficient attack on them. In this class we can
found cryptosystem that base their security on the factorization problem, the discrete logarithm
problem or the hash-function collision finding.

6. Proof : ECB is not semantically secure.
Let m0 = m‖m and m1 = m‖m̂ with len(m) = len of the block. The challenger will reply with
c = c1‖c2 as

• if b = 0, then c = c‖c = Enc(k,m)‖Enc(k,m)

• if b = 1, then c = c‖ĉ = Enc(k,m)‖Enc(k, m̂)

If c1 = c2, then the adversary will output b′ = 0. If c1 6= c2, then the adversary will output b′ = 1.

Pr(b′ = b) = 1

Proof: CBC is semantic secure if the block cipher is semantically secure.

Let m0 = m‖m and m1 = m‖m̂ with len(m) = len of the block. The challenger will reply with
c = c1‖c2 as

• if b = 0, then c = c‖c = Enc(k, IV ⊕m)‖Enc(k,Enc(k, IV ⊕m)⊕m)

• if b = 1, then c = c‖ĉ = Enc(k, IV ⊕m)‖Enc(k,Enc(k, IV ⊕m)⊕ m̂)

Since the first block is the same, the adversary can define r = Enc(k, IV ⊕m) and obtain

• if b = 0, then Enc(k, r ⊕m)

• if b = 1, then Enc(k, r ⊕ m̂)
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Since the adversary knows r,m and m̂, the adversary has to break the semantic security of the block
cipher (Enc,Dec).
But the blockcipher is semantically secure and so CBC is semantically secure if the block cipher is
semantically secure.

7. The DH key exchange protocol is defined with the following protocol between A and B:

• A generate a description of a cyclic group G = 〈g〉 of order q and B accepts the public parameters.

• A chooses at random a value a ∈ {1, · · · , q − 1} and compute A = ga in G and sends it to B

• B chooses at random a value b ∈ {1, · · · , q − 1} and compute B = gb in G and sends it to A

• A computes the common shared secret key Ba = sk = gab

• B computes the common shared secret key Ab = sk = gba

The main difference is that DH is a key-exchange protocol and ElGamal is a encryption scheme. This
means that they have different application.
On the other hand, they work on a cyclic group with a generator and their security is connected to
the Discrete Logarithm problem.

8. Proposition:1 Given a year with N days, the generalized birthday problem asks for the minimal
number n such that, in a set of n randomly chosen people, the probability of a birthday coincidence
is at least 50% (assuming that birthdays are independent random variables with same distribution
Pr(X = day ) = 1

N .
In other words, n is the minimal integer such that

1−
n−1∏
i=1

(
N − i
N

)
≥ 1

2

and
n ' 1.177

√
N

The birthday problem solutions are really small with respect to the N (this is the paradox part!). The
main goal of the paradox is trying to find in a set of N people, any possible pair of them with the same
birthday. The number of possible pair is pretty big (this is what tricks people) and so if we randomly
take n pairs, the probability that they have the same birthday grows slower than the dimension N .
The birthday paradox relates to hash function since a hash function is considered to be probabilistically
equivalent to the uniform distribution on a fixed dimension set, i.e., the digests as the output strings
of the hash function.
Since we have the uniform distribution and a fixed number of possible digests N , we can use the
birthday paradox to find n as the minimum number of different messages such that the probability of
obtaining a collision is greater than 1

2

9. The verification is a straightforward calculation:

r = gsX−e = gy+xe(gx)−e = gy+xe−xe = gy = Y.

Thus a correctly produced signature will verify, since h(m||r) = h(m||Y ) = e.

Hard

10. Fermat’s little theorem states that Kp−1 = 1, so K ·Kp−2 = 1. Thus K−1 = Kp−2.

For RSA decryption, we note that, according to Euler’s theorem, eΦ(Φ(N)) = 1 ∈ ZΦ(N). This could be
used to find d = e−1, but it becomes necessary to compute Φ(Φ(N)), which is infeasible for practical
N .

1Link to a interactive explanation of the birthday problem.
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11. • We pick a1, a2
R← F uniformly at random. Say they become a1 = 3 and a2 = 1 and then we

define
h(x) = s+ a1x+ a2x

2 = 6 + 3x+ x2

We have that the shares of s = 6 are

s1 = h(1) = 6 + 3 + 1 (mod 11) = 10

s2 = h(2) = 6 + 3 ∗ 2 + 4 (mod 11) = 5

s3 = h(3) = 6 + 3 ∗ 3 + 9 (mod 11) = 2

s4 = h(4) = 6 + 3 ∗ 4 + 16 (mod 11) = 1

s5 = h(5) = 6 + 3 ∗ 5 + 25 (mod 11) = 2

• Given the shares s3, s4, s5 it is possible to reconstruct the secret s by computing the Lagrange
interpolation.

δ3(x) =
∏
j=4,5

x− j
3− j

=
(x− 4)(x− 5)

(3− 4)(3− 5)
=
x2 − 9x+ 20

2
(mod 11)

= (x2 + 2x+ 9)6 (mod 11) = 6x2 + x+ 10 (mod 11)

δ4(x) =
∏
j=3,5

x− j
4− j

=
(x− 3)(x− 5)

(4− 3)(4− 5)
=
x2 − 8x+ 15

−1
(mod 11)

= (x2 + 3x+ 4)10 (mod 11) = 10x2 + 8x+ 7 (mod 11)

δ5(x) =
∏
j=3,4

x− j
5− j

=
(x− 3)(x− 4)

(5− 3)(5− 4)
=
x2 − 7x+ 12

2
(mod 11)

= (x2 + 4x+ 1)6 (mod 11) = 6x2 + 2x+ 6 (mod 11)

We let
h(x) = s3δ3(x) + s4δ4(x) + s5δ5(x) (mod 11)

and since we have s3 = 2, s4 = 1 and s5 = 2, it holds:

s = h(0) = s3 · 10 + s4 · 7 + s5 · 6 (mod 11) = 2 · 10 + 1 · 7 + 2 · 6 (mod 11) = 6 (mod 11)

12. • The Mignotte’s scheme we are considering has m1 = 5,m2 = 6,m3 = 7,m4 = 11,m5 = 13.
Fixing a threshold t ∈ {1, · · · , 4}, it has to hold

m5−t+1 · · ·mt < m1 · · ·mt+1 gcd(mi,mj) = 1 for all i, j ∈ {1, · · · , 5} with i 6= j

We can easily see that gcd(mi,mj) = 1 for all the possible choice of i, j ∈ {1, · · · , 5} with i 6= j.
We now consider the different values for t:

– t = 1, it can be a possible threshold since

13 = m5 < m1m2 = 5 · 6 = 30

– t = 2, it can be a possible threshold since

143 = 11 · 13 = m4m5 < m1m2m3 = 5 · 6 · 7 = 210

– t = 3, it can be a possible threshold since

1001 = 7 · 11 · 13 = m3m4m5 < m1m2m3m4 = 5 · 6 · 7 · 11 = 2310

– t = 4, it can be a possible threshold since

6006 = 6 · 7 · 11 · 13m2m3m4m5 < m1m2m3m4m5 = 5 · 6 · 7 · 11 · 13 = 30030

• If t = 2, from the check

143 = 11 · 13 = m4m5 < m1m2m3 = 5 · 6 · 7 = 210

we have that s ∈ {143, · · · , 210}
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• We have that 
s ≡ 0 (mod 5)

s ≡ 1 (mod 6)

s ≡ 5 (mod 7)

From the Chinese Remainder Theorem, we start studying the last two equations:{
s ≡ 1 (mod 6)

s ≡ 5 (mod 7)

From the extended Euclidean algorithm we obtain that 1 = (−1) · 6 + (1) · 7 and for this reason,
we obtain that the partial solution ŝ is

ŝ = 5 · (−1) · 6 + 1 · (1) · 7 (mod 6 · 7) = −30 + 7 (mod 42) ≡ 19 (mod 42)

We now consider {
s ≡ 0 (mod 5)

s ≡ 19 (mod 42)

From the extended Euclidean algorithm, we have that 1 = (−2) · 42 + (17) · 5 and for this reason,
we obtain that the solution s is

s = 19 · (17) · 5 + 0 · (−2) · 42 (mod 5 · 42) = 1615 (mod 210) ≡ 145 (mod 210)

and s ∈ {143, · · · , 210}. We found that the secret s = 145.

13. (a) Mallory’s assumption is that Alice’s message is 10x for some integer x. Then we have c =
(10m)e = 10eme, where the computations are in Z∗N . Mallory can compute 10e and invert it
using the extended Euclidean algorithm to get 10−e. Finally, he constructs the bid c · (10)−e ·11e,
which equals (11m)e, i.e. the encryption of 11m.

An alternative solution is to do a brute force attack, based on the reasonable assumption that a
bid is likely to be “small”, say at most one million. If, further, the bid is also a multiple of ten,
this gives only 105 possibilities and Mallory can encrypt all possible bids until he gets c. Now he
knows Alice’s bid, so he can add 10% and encrypt this number. This is certainly feasible, but
still involves a lot of computation, so this solution is inferior to the one above.

(b) Two main ingredients in padding are randomization (to avoid that the same message encrypted
twice gives the same encryption) and redundancy (so that randomly constructed ciphertexts are
unlikely to be encryptions of a valid message).

Think

14. Everything!

15. Proposed answer: from a stream cipher and a block cipher, we can build everything we have seen
during the course and the security of the new “walls” can be reduced to the security of these “bricks”,
in this particular order:

• From a stream cipher, we have access to a PRG and its security is determined by the security of
the stream cipher

• From a PRG and a block cipher, we can construct all the mode of operations on block cipher
that will be secure with respect the randomness of the PRG or the security of the block cipher

• From a block cipher, we can build secure hash functions.

• From the PRG, we can generate random uniform numbers and the numbers will be truly random.

• From the PRG, we can generate random uniform numbers, and so build the public key exchange
protocols. In this case, the security for the PK encryption scheme will be based on complexity
assumptions.

• From the different secure construction, we can build all the cryptographic protocol needed for
TLS/SSL and so communicate in a secure way.
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I don’t want to give you a formal proof of why the security is always connected with the bricks, but
if you study how the different cryptographic primitives works, you will always find that the security
is always related to “real randomness” or “this has to look random”.

16. For this question there is no correct answer. The question wants you to reason on the social/moral/human
rights that cryptography are able to provide:

• Privacy as the human right to have some secret information

• Secure communication as the right to communicate with someone without being spied

• Information storage as the right to store information that no one can modify

• Authentication as the capacity to correctly and digitally identify a person in a group

• Knowledge as the fact that cryptography is a bridge between mathematics, informatics and other
science and cryptography is a tool for human-right laws, social sciences and many other academic
disciplines or real-life scenario

Any of these reason can be used to help or harm people. It’s your choice how to use cryptography.

17. It is possible. This cryptographic primitive is contained in a class of Cryptographic Obfuscation.
The topic is an open problem in cryptography and it is, nowadays, a theoretical construction described
in different papers, such as this.
If you want, you can read this paper and you can notice that the question given is the abstract of that
paper!
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