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Altran – Industrial Users of Formal Methods

• Altran has around 25000 consultants
• In the UK we focus on the development of high-integrity

software
• ... and we also co-develop SPARK!
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1.
Problem



Why We Do It

No bugs please!
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Motivating Example

Consider the following few lines of code from the original
release of the Tokeneer code:

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Can you see the problem? This error escaped lots of testing!
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Tokeneer

• NSA-funded demonstrator of high-security software
engineering

• biometric system for user verification and access control
• formal methods used: system specification and security

properties in Z, implementation in SPARK

• small system (budget), about 10 kloc logical (2623 VCs)
• 2513 VCs were proven automatically (95.8 %), with 43 left

to the an interactive prover and 67 discharged by review
• http://www.adacore.com/sparkpro/tokeneer/

• Open source (code, formal spec, project docs). Go and
download!

6 Safe and Secure Software Using SPARK

http://www.adacore.com/sparkpro/tokeneer/


Static Verification Goals

Ideally we would like static verifica-
tion to deliver analyses which are:

• Deep (tells you something useful...)
• Sound (with no false negatives...)
• Fast (tells you now...)
• Complete (with as few false alarms/positives as possible...)
• Modular and Constructive (and works on incomplete

programs.)

SPARK is designed with these goals in mind. Since the 80ies!
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2.
What is SPARK?



What is SPARK?
SPARK is...
• A programming language...
• A set of program verification tools...
• A design approach for high-integrity software...

All of the above!
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SPARK - Analysable Subset of Ada

• Exclude language features difficult to specify/verify
• Pointers and aliasing
• Exceptions

• Eliminate sources of ambiguity
• Functions (not procedures) cannot have side-effects
• Expressions cannot have side-effects
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SPARK Application Domains

• Designed for embedded and real-time systems.
• Typical systems:

• Hard real-time requirements
• Little or no Operating System on target (no disk or VM...)
• Fixed, known amount of storage

• Application domains:
• The size of the problem is known in advance i.e. how many

wings, engines, targets, tracks, etc.

• SPARK was not designed for building GUIs, database
applications, web-servers and so on.

• Recently used for large, server-side, safety-critical system
using tasking and richer data types (iFACTS).
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Contracts
• Contract: agreement between the client and the supplier of

a service
• Program contract: agreement between the caller and the

callee subprograms

• Assigns responsibilities
• A way to organise your code
• Not a new idea (Floyd, Hoare, Dijkstra, Meyer)
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Example Contract

Contracts are about what your code does rather than how it
does it. Example:

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Question: What difference do types make?
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Types and Contracts

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

With the help of types:

procedure Sqrt (Input : in Natural; Res: out Natural)

with

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Less to write!
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Observation: Good Fit!

SPARK offers a wide range of
“built-in” contracts:
• Type ranges
• Interfaces
• Privacy
• Parameter Modes
• Generic Parameters
• Parameters not aliased
• Parameters initialised
• Strong typing ...
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Strong Typing (SPARK vs C)

Example in C:
int A = 10 * 0.9;

in Ada:
A : Integer := 10 * Integer (0.9);

A : Integer := Integer (Float (10) * 0.9);

• Types are at the base of the SPARK (Ada) model
• Semantic is different from representation
• Associated with properties (ranges, attributes) and

operators
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Data Flow Analysis

What Is It and Why Do We Care?
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Data Flow Analysis

Static analysis performed by SPARK tools, that detects all
occurrences of:

• Use of uninitialized variables
• Ineffective statements

• statements which update variables
• but which have no effect on the

final value of any variable

• Unused variables
• Aliasing of output parameters
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Data Flow Analysis Example

procedure P (X, Y : in Integer;

Z : out Integer)

is

T : Integer;

begin

T := X + 1;

T := T + Y;

Z := 3;

end P;

Which are the data flow errors here?
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Data Flow Analysis Example

procedure P (X, Y : in Integer;

Z : out Integer)

is

T : Integer;

begin

T := X + 1;

T := T + Y;

Z := 3;

end P;

warning: unused initial value of “X”
warning: unused initial value of “Y”

20 Safe and Secure Software Using SPARK



Run-Time Errors

A simple assignment statement
A (I + J) := P / Q;

Which are the possible run-time errors for this example?
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Run-Time Errors

A simple assignment statement
A (I + J) := P / Q;

The following errors could occur:
1 I + J might overflow the base-type of the index range’s

subtype (arithmetic overflow)
2 I + J might be outside the index range’s subtype
3 P/Q might overflow the base-type of the element type

(arithmetic overflow)
4 P/Q might be outside the element subtype
5 Q might be zero
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Verification Condition Generation

• Type safety (aka No
run-time errors)
• Arithmetic overflow
• Division by zero
• Array index range

error (buffer overflow)
• And many more...
• ...for every statement

in your program...

• Partial correctness with
respect to pre- and post-
conditions
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Motivating Example Revisited

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Failed VC:
procedure_readduration_4.

H1: rawduration__1 >= - 2147483648 .

H2: rawduration__1 <= 2147483647 .

...

->

C1: success__1 -> rawduration__1 * 10 >= - 2147483648 and

rawduration__1 * 10 <= 2147483647 .
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Scaling Up

SPARK has solutions for scaling up.

• Interfacing to...
• other

languages
• other systems
• volatiles

• Concurrency
support

• Design
• abstraction
• refinement
• INFORMED

design
approach
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3.
Combining Test and Proof



SPARK 2014 Rationale...

Problem: Testing approach flawed... Proving approach flawed...

Two hurdles in the take-up of verifying compiler technology:
1 the lack of a convincing cost-benefit argument
2 the difficulty of reaching non-expert users

Solution?
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Mixing Test and Proof
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Executable Contracts
• Executable contract vs formal

contract?
• The same contract interpreted

in two different worlds
[Cha10]:

1 Executable Boolean
expression

2 First-order logic formula

• Ada 2012 has executable and
formal contracts as part of the
language

Test your contracts... or prove your contracts ... or do both!
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Mixing Test and Proof

• Modular verification
• Low-level requirements expressed as contracts
• Successful execution of postcondition→ test successful
• Successful proof of postcondition→ low-level requirement

verified for all input
• Some low-level requirements are tested, some are proved
• Is the combination as “strong” as all low level requirements

tested?
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Benefits of Hybrid Verification

easily proved

80%

easily tested (80% of 20%)

16%

• Helps with gradual introduction to formal proof
• The traditional 80/20% rule holds for both formal

verification and testing
• More about this approach in [CKM12]
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SPARK 2014 Architecture

• Joint development between Altran and AdaCore
• Built using the GNAT compiler front-end
• Why3 [BFPM11] is the intermediate proof language
• Modern implementation of data and flow analysis
• GNATprove, the end user tool, can be run from GPS IDE
• Under the hood: gnat2why translation
• Tools ship with Alt-Ergo and CVC4
• More on SPARK 2014 architecture: the convergence of

compiler technology and program verification [KSD12]
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4.
Sample Projects



Project: SHOLIS
1995

• Assists naval crew with the safe operation of helicopters at
sea

• Shows safety limits on wind vectors, ship’s roll and pitch,
etc.
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Project: SHOLIS
1995

• No operating system and no COTS libraries of any kind
• 27 kloc (logical) of SPARK code, 54 kloc of information-flow

contracts, and 29 kloc of proof contracts
• 9000 VCs
• 75.5% proven automatically by the Simplifier
• 2200 remaining VCs proved manually using the Checker
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Project: C130J
1995

• Lockheed-Martin C130J is the latest generation of the
“Hercules” transport aircraft

• Mission Computer implemented in SPARK, and was subject
to a large verification effort in the UK
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Project: C130J
1995

• Originally started as Ada code, but was converted to
SPARK

• Only flow analysis and testing to meet DO-178B Level A
• This was already very successful (used only 20% of testing

budget)
• Later, UK MoD demanded proof to meet DEFSTAN 00-55
• Original spec (in Parnas-Tables) converted to pre- and

post-conditions
• Proof effort was completed successfully (sorry – no stats

available!)
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Project: iFACTS
2006→ today

• iFACTS augments tools for en-route air-traffic controllers in
the UK

• Provides electronic flight-strip management, trajectory
prediction and medium-term conflict detection
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Project: iFACTS
2006→ today

• In full operational service since 2011
• Formal specification in Z
• Written in SPARK – 250 kloc
• 153,000 VCs of which 98.76% are discharged

automatically (user rules and review for the rest)
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Project: SPARKSkein
2010

• Common misconception “Ada is slower than C because of
all this safety stuff...”

• Implementation of Skein (a contender for SHA3, sadly not
the winner) in SPARK

• Clean implementation (for example instead of macros, we
just use normal procedures)

• After some improvements in the gcc backend, the C and
SPARK implementations are equally fast
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Project: SPARKSkein
2010

• Absence of RTE proved: originally 23 of 367 VCs proved
via Checker, now 100% is proved automatically using
Victor or Riposte

• Proof was difficult: non-linear arithmetic and modular types
• We found an arithmetic-overflow bug in the C reference

implementation (since the SPARK implementation closely
mirrored it)

• Released as free software (GPLv3)
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Project: Muen Separation Kernel
2013

• Reto Buerki and Adrian-Ken Rueegsegger (both HSR –
University of Applied Sciences Rapperswil)

• Separation kernel for Intel x86/64 platform
• Written in SPARK (2463 logical), and assembly (256 lines)
• Proof of absence of RTE, all 666 VCs are discharged

automatically
• Again, free software (GPLv3)
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Vermont Tech CubeSat

• 14 mini satellites launched in November 2013
• NASA ELaNa IV (Educational Launch of Nanosatellites)

• the only one that remained operational until reentry
• programmed mostly by undergraduate students
• several students with little or no overlap in time
• Prof. Carl Brandon attributes success of project SPARK
• slides about project: http://www.cubesatlab.org/
• Next mission Lunar IceCube is a 6-Unit CubeSat mission

sponsored by NASA to prospect for lunar volatiles
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5.
Summary



Summary Key SPARK Benefits

1 Right First Time
2 Regulatory compliance
3 Reduced cost of testing
4 Increased trustworthiness
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Regulatory Compliance Using SPARK

SPARK can be used as part of a rigorous development method
for regulated industries that require certification against specific
standards.
Standards come in different flavours, but SPARK has been
used (at the highest levels) in all these contexts:

• Prescriptive/process-based standards Eg. DO-178B/C
(ED-12B/C); CENELEC 50128; IEC 61508; ISO 26262; BS
EN 60880; Common Criteria; ITSEC; 00-55;

• Argument-based (eg. Safety Case-based) standards Eg.
00-56; CAP 670/SW 01

• Standards where formal methods are mandated Eg.
Common Criteria @ EAL 7; DO-333
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Objectives of Using SPARK

• Safe Coding Standard for Critical Software
• Prove Absence of Run-Time Errors (AoRTE)
• Prove Correct Integration Between Components
• Prove Functional Correctness
• Ensure Correct Behaviour of Parameterized Software
• Safe Optimization of Run-Time Checks
• Address Data and Control Coupling
• Ensure Portability of Programs
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6.
Resources



SPARK - Teaching
Consider teaching SPARK:
• formal and sound
• contracts, programming

language based program
verification

• industrially used
• open source
• mature tools
• support for academic faculty
• code examples, problems and

sample answers
• excellent books; new book

2015 (Chapin, McCormick),
(Barnes’ book 3rd edition)
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Resources & Getting Started
• http://www.spark-2014.org/

• SPARK Community Page: http://libre.adacore.com/
tools/spark-gpl-edition/community/

• GAP - GNAT Academic Program
• Open-source, GPL release of SPARK tools
• http://libre.adacore.com/home/academia/
• Support from SPARK team for faculty

• Getting Started
• Download the tools:
http://libre.adacore.com/download/

• User Guide:
http://docs.adacore.com/spark2014-docs/html/ug/,
chapter 5, SPARK tutorial, is a good start

• SPARK 2014 Reference Manual:
http://docs.adacore.com/spark2014-docs/html/lrm/

• New to Ada? See http://university.adacore.com/
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End of Talk

Thank you for your attention.
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