
Safe and Secure Software Using SPARK
Angela Wallenburg

Angela Wallenburg

1 September 2017



Altran – Industrial Users of Formal Methods

• Altran has around 25000 consultants
• In the UK we focus on the development of high-integrity

software
• ... and we also co-develop SPARK!

2 Safe and Secure Software Using SPARK



1.
Problem



Why We Do It

No bugs please!

4 Safe and Secure Software Using SPARK



Motivating Example

Consider the following few lines of code from the original
release of the Tokeneer code:

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Can you see the problem? This error escaped lots of testing!

5 Safe and Secure Software Using SPARK



Tokeneer

• NSA-funded demonstrator of high-security software
engineering

• biometric system for user verification and access control
• formal methods used: system specification and security

properties in Z, implementation in SPARK

• small system (budget), about 10 kloc logical (2623 VCs)
• 2513 VCs were proven automatically (95.8 %), with 43 left

to the an interactive prover and 67 discharged by review
• http://www.adacore.com/sparkpro/tokeneer/

• Open source (code, formal spec, project docs). Go and
download!

6 Safe and Secure Software Using SPARK

http://www.adacore.com/sparkpro/tokeneer/


Static Verification Goals

Ideally we would like static verifica-
tion to deliver analyses which are:

• Deep (tells you something useful...)
• Sound (with no false negatives...)
• Fast (tells you now...)
• Complete (with as few false alarms/positives as possible...)
• Modular and Constructive (and works on incomplete

programs.)

SPARK is designed with these goals in mind. Since the 80ies!

7 Safe and Secure Software Using SPARK



2.
What is SPARK?



What is SPARK?
SPARK is...
• A programming language...
• A set of program verification tools...
• A design approach for high-integrity software...

All of the above!

9 Safe and Secure Software Using SPARK



SPARK - Analysable Subset of Ada

• Exclude language features difficult to specify/verify
• Pointers and aliasing
• Exceptions

• Eliminate sources of ambiguity
• Functions (not procedures) cannot have side-effects
• Expressions cannot have side-effects

10 Safe and Secure Software Using SPARK



SPARK Application Domains

• Designed for embedded and real-time systems.
• Typical systems:

• Hard real-time requirements
• Little or no Operating System on target (no disk or VM...)
• Fixed, known amount of storage

• Application domains:
• The size of the problem is known in advance i.e. how many

wings, engines, targets, tracks, etc.

• SPARK was not designed for building GUIs, database
applications, web-servers and so on.

• Recently used for large, server-side, safety-critical system
using tasking and richer data types (iFACTS).

11 Safe and Secure Software Using SPARK



Contracts
• Contract: agreement between the client and the supplier of

a service
• Program contract: agreement between the caller and the

callee subprograms

• Assigns responsibilities
• A way to organise your code
• Not a new idea (Floyd, Hoare, Dijkstra, Meyer)

12 Safe and Secure Software Using SPARK



Example Contract

Contracts are about what your code does rather than how it
does it. Example:

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Question: What difference do types make?

13 Safe and Secure Software Using SPARK



Types and Contracts

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

With the help of types:

procedure Sqrt (Input : in Natural; Res: out Natural)

with

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Less to write!

14 Safe and Secure Software Using SPARK



Observation: Good Fit!

SPARK offers a wide range of
“built-in” contracts:
• Type ranges
• Interfaces
• Privacy
• Parameter Modes
• Generic Parameters
• Parameters not aliased
• Parameters initialised
• Strong typing ...

15 Safe and Secure Software Using SPARK



Strong Typing (SPARK vs C)

Example in C:
int A = 10 * 0.9;

in Ada:
A : Integer := 10 * Integer (0.9);

A : Integer := Integer (Float (10) * 0.9);

• Types are at the base of the SPARK (Ada) model
• Semantic is different from representation
• Associated with properties (ranges, attributes) and

operators

16 Safe and Secure Software Using SPARK



Data Flow Analysis

What Is It and Why Do We Care?

17 Safe and Secure Software Using SPARK



Data Flow Analysis

Static analysis performed by SPARK tools, that detects all
occurrences of:

• Use of uninitialized variables
• Ineffective statements

• statements which update variables
• but which have no effect on the

final value of any variable

• Unused variables
• Aliasing of output parameters

18 Safe and Secure Software Using SPARK



Data Flow Analysis Example

procedure P (X, Y : in Integer;

Z : out Integer)

is

T : Integer;

begin

T := X + 1;

T := T + Y;

Z := 3;

end P;

Which are the data flow errors here?

19 Safe and Secure Software Using SPARK



Data Flow Analysis Example

procedure P (X, Y : in Integer;

Z : out Integer)

is

T : Integer;

begin

T := X + 1;

T := T + Y;

Z := 3;

end P;

warning: unused initial value of “X”
warning: unused initial value of “Y”

20 Safe and Secure Software Using SPARK



Run-Time Errors

A simple assignment statement
A (I + J) := P / Q;

Which are the possible run-time errors for this example?

21 Safe and Secure Software Using SPARK



Run-Time Errors

A simple assignment statement
A (I + J) := P / Q;

The following errors could occur:
1 I + J might overflow the base-type of the index range’s

subtype (arithmetic overflow)
2 I + J might be outside the index range’s subtype
3 P/Q might overflow the base-type of the element type

(arithmetic overflow)
4 P/Q might be outside the element subtype
5 Q might be zero

22 Safe and Secure Software Using SPARK



Verification Condition Generation

• Type safety (aka No
run-time errors)
• Arithmetic overflow
• Division by zero
• Array index range

error (buffer overflow)
• And many more...
• ...for every statement

in your program...

• Partial correctness with
respect to pre- and post-
conditions

23 Safe and Secure Software Using SPARK



Motivating Example Revisited

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Failed VC:
procedure_readduration_4.

H1: rawduration__1 >= - 2147483648 .

H2: rawduration__1 <= 2147483647 .

...

->

C1: success__1 -> rawduration__1 * 10 >= - 2147483648 and

rawduration__1 * 10 <= 2147483647 .

24 Safe and Secure Software Using SPARK



Scaling Up

SPARK has solutions for scaling up.

• Interfacing to...
• other

languages
• other systems
• volatiles

• Concurrency
support

• Design
• abstraction
• refinement
• INFORMED

design
approach

25 Safe and Secure Software Using SPARK



3.
Combining Test and Proof



SPARK 2014 Rationale...

Problem: Testing approach flawed... Proving approach flawed...

Two hurdles in the take-up of verifying compiler technology:
1 the lack of a convincing cost-benefit argument
2 the difficulty of reaching non-expert users

Solution?

27 Safe and Secure Software Using SPARK



Mixing Test and Proof

28 Safe and Secure Software Using SPARK



Executable Contracts
• Executable contract vs formal

contract?
• The same contract interpreted

in two different worlds
[Cha10]:

1 Executable Boolean
expression

2 First-order logic formula

• Ada 2012 has executable and
formal contracts as part of the
language

Test your contracts... or prove your contracts ... or do both!

29 Safe and Secure Software Using SPARK



Mixing Test and Proof

• Modular verification
• Low-level requirements expressed as contracts
• Successful execution of postcondition→ test successful
• Successful proof of postcondition→ low-level requirement

verified for all input
• Some low-level requirements are tested, some are proved
• Is the combination as “strong” as all low level requirements

tested?

30 Safe and Secure Software Using SPARK



Benefits of Hybrid Verification

easily proved

80%

easily tested (80% of 20%)

16%

• Helps with gradual introduction to formal proof
• The traditional 80/20% rule holds for both formal

verification and testing
• More about this approach in [CKM12]

31 Safe and Secure Software Using SPARK



SPARK 2014 Architecture

• Joint development between Altran and AdaCore
• Built using the GNAT compiler front-end
• Why3 [BFPM11] is the intermediate proof language
• Modern implementation of data and flow analysis
• GNATprove, the end user tool, can be run from GPS IDE
• Under the hood: gnat2why translation
• Tools ship with Alt-Ergo and CVC4
• More on SPARK 2014 architecture: the convergence of

compiler technology and program verification [KSD12]

32 Safe and Secure Software Using SPARK



4.
Sample Projects



Project: SHOLIS
1995

• Assists naval crew with the safe operation of helicopters at
sea

• Shows safety limits on wind vectors, ship’s roll and pitch,
etc.

34 Safe and Secure Software Using SPARK



Project: SHOLIS
1995

• No operating system and no COTS libraries of any kind
• 27 kloc (logical) of SPARK code, 54 kloc of information-flow

contracts, and 29 kloc of proof contracts
• 9000 VCs
• 75.5% proven automatically by the Simplifier
• 2200 remaining VCs proved manually using the Checker

35 Safe and Secure Software Using SPARK



Project: C130J
1995

• Lockheed-Martin C130J is the latest generation of the
“Hercules” transport aircraft

• Mission Computer implemented in SPARK, and was subject
to a large verification effort in the UK

36 Safe and Secure Software Using SPARK



Project: C130J
1995

• Originally started as Ada code, but was converted to
SPARK

• Only flow analysis and testing to meet DO-178B Level A
• This was already very successful (used only 20% of testing

budget)
• Later, UK MoD demanded proof to meet DEFSTAN 00-55
• Original spec (in Parnas-Tables) converted to pre- and

post-conditions
• Proof effort was completed successfully (sorry – no stats

available!)

37 Safe and Secure Software Using SPARK



Project: iFACTS
2006→ today

• iFACTS augments tools for en-route air-traffic controllers in
the UK

• Provides electronic flight-strip management, trajectory
prediction and medium-term conflict detection

38 Safe and Secure Software Using SPARK



Project: iFACTS
2006→ today

• In full operational service since 2011
• Formal specification in Z
• Written in SPARK – 250 kloc
• 153,000 VCs of which 98.76% are discharged

automatically (user rules and review for the rest)

39 Safe and Secure Software Using SPARK



Project: SPARKSkein
2010

• Common misconception “Ada is slower than C because of
all this safety stuff...”

• Implementation of Skein (a contender for SHA3, sadly not
the winner) in SPARK

• Clean implementation (for example instead of macros, we
just use normal procedures)

• After some improvements in the gcc backend, the C and
SPARK implementations are equally fast

40 Safe and Secure Software Using SPARK



Project: SPARKSkein
2010

• Absence of RTE proved: originally 23 of 367 VCs proved
via Checker, now 100% is proved automatically using
Victor or Riposte

• Proof was difficult: non-linear arithmetic and modular types
• We found an arithmetic-overflow bug in the C reference

implementation (since the SPARK implementation closely
mirrored it)

• Released as free software (GPLv3)

41 Safe and Secure Software Using SPARK



Project: Muen Separation Kernel
2013

• Reto Buerki and Adrian-Ken Rueegsegger (both HSR –
University of Applied Sciences Rapperswil)

• Separation kernel for Intel x86/64 platform
• Written in SPARK (2463 logical), and assembly (256 lines)
• Proof of absence of RTE, all 666 VCs are discharged

automatically
• Again, free software (GPLv3)

42 Safe and Secure Software Using SPARK



Vermont Tech CubeSat

• 14 mini satellites launched in November 2013
• NASA ELaNa IV (Educational Launch of Nanosatellites)

• the only one that remained operational until reentry
• programmed mostly by undergraduate students
• several students with little or no overlap in time
• Prof. Carl Brandon attributes success of project SPARK
• slides about project: http://www.cubesatlab.org/
• Next mission Lunar IceCube is a 6-Unit CubeSat mission

sponsored by NASA to prospect for lunar volatiles
43 Safe and Secure Software Using SPARK

http://www.cubesatlab.org/


5.
Summary



Summary Key SPARK Benefits

1 Right First Time
2 Regulatory compliance
3 Reduced cost of testing
4 Increased trustworthiness

45 Safe and Secure Software Using SPARK



Regulatory Compliance Using SPARK

SPARK can be used as part of a rigorous development method
for regulated industries that require certification against specific
standards.
Standards come in different flavours, but SPARK has been
used (at the highest levels) in all these contexts:

• Prescriptive/process-based standards Eg. DO-178B/C
(ED-12B/C); CENELEC 50128; IEC 61508; ISO 26262; BS
EN 60880; Common Criteria; ITSEC; 00-55;

• Argument-based (eg. Safety Case-based) standards Eg.
00-56; CAP 670/SW 01

• Standards where formal methods are mandated Eg.
Common Criteria @ EAL 7; DO-333

46 Safe and Secure Software Using SPARK



Objectives of Using SPARK

• Safe Coding Standard for Critical Software
• Prove Absence of Run-Time Errors (AoRTE)
• Prove Correct Integration Between Components
• Prove Functional Correctness
• Ensure Correct Behaviour of Parameterized Software
• Safe Optimization of Run-Time Checks
• Address Data and Control Coupling
• Ensure Portability of Programs

47 Safe and Secure Software Using SPARK



6.
Resources



SPARK - Teaching
Consider teaching SPARK:
• formal and sound
• contracts, programming

language based program
verification

• industrially used
• open source
• mature tools
• support for academic faculty
• code examples, problems and

sample answers
• excellent books; new book

2015 (Chapin, McCormick),
(Barnes’ book 3rd edition)

49 Safe and Secure Software Using SPARK



Resources & Getting Started
• http://www.spark-2014.org/

• SPARK Community Page: http://libre.adacore.com/
tools/spark-gpl-edition/community/

• GAP - GNAT Academic Program
• Open-source, GPL release of SPARK tools
• http://libre.adacore.com/home/academia/
• Support from SPARK team for faculty

• Getting Started
• Download the tools:
http://libre.adacore.com/download/

• User Guide:
http://docs.adacore.com/spark2014-docs/html/ug/,
chapter 5, SPARK tutorial, is a good start

• SPARK 2014 Reference Manual:
http://docs.adacore.com/spark2014-docs/html/lrm/

• New to Ada? See http://university.adacore.com/

50 Safe and Secure Software Using SPARK

http://www.spark-2014.org/
http://libre.adacore.com/tools/spark-gpl-edition/community/
http://libre.adacore.com/tools/spark-gpl-edition/community/
http://libre.adacore.com/home/academia/
http://libre.adacore.com/download/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/lrm/
http://university.adacore.com/


End of Talk

Thank you for your attention.

51 Safe and Secure Software Using SPARK



References I

[BFPM11] François Bobot, Jean-Christophe Filliâtre, Andrei
Paskevich, and Claude Marché.
Why3: Shepherd your herd of provers.
In Proceedings of the First International Workshop
on Intermediate Verification Languages, Boogie,
2011.

[Cha10] Patrice Chalin.
Engineering a sound assertion semantics for the
verifying compiler.
IEEE Trans. Software Eng., 36(2):275–287, 2010.

[CKM12] Cyrille Comar, Johannes Kanig, and Yannick Moy.
Integrating formal program verification with testing.
In Proc. Embedded Real Time Software and
Systems, Toulouse, February 2012.

52 Safe and Secure Software Using SPARK



References II

[Hoa03] Tony Hoare.
The verifying compiler: A grand challenge for
computing research.
Journal of the ACM, 50:2003, 2003.

[KSD12] Johannes Kanig, Edmond Schonberg, and Claire
Dross.
Hi-Lite: the convergence of compiler technology and
program verification.
In Proceedings of the 2012 ACM conference on
High integrity language technology, HILT ’12, pages
27–34, New York, NY, USA, 2012. ACM.

53 Safe and Secure Software Using SPARK




	Problem
	What is Spark?
	Sample Projects
	Summary
	Resources

