
Formal Methods for Software Development
Model Checking with Temporal Logic

Wolfgang Ahrendt

15nd September 2017

FMSD: Model Checking with Temporal Logic /GU 170915 1 / 36

Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system T (e.g., derived from a Promela program).

Verification task: is the LTL formula φ satisfied in all traces of T , i.e.,

T |= φ ?

FMSD: Model Checking with Temporal Logic /GU 170915 2 / 36

LTL Model Checking—Overview

T |= φ ?

1. Construct generalised Büchi automaton GB¬φ for negation of φ

2. Construct an equivalent normal Büchi automaton B¬φ, i.e.,

Lω(B¬φ) = Lω(GB¬φ)

3. Construct product T ⊗ B¬φ
4. Analyse whether T ⊗ B¬φ has a

path π looping through an ‘accepting node’

5. If such a π is found, then

T 6|= φ
and

σπ is a counter example.

If no such π is found, then

T |= φ

FMSD: Model Checking with Temporal Logic /GU 170915 3 / 36

Product of Transition System and Büchi Automaton

A model checking graph is a directed graph with initial and accepting
nodes.

Definition (Model Checking Graph)

A model checking graph (N,→,N0,Na) is composed of:

I finite, non-empty set of nodes N

I an ‘arrow’ relation →⊆ N × N

I a non-empty set of initial nodes N0 ⊆ N

I a set of accepting nodes Na ⊆ N

FMSD: Model Checking with Temporal Logic /GU 170915 4 / 36

Product of Transition System and Büchi Automaton

In the following, we assume without further mention:

1. transition systems without terminal states:
{s ′ ∈ S |s → s ′} 6= ∅ for all states s ∈ S

2. total Büchi automata:
δ(q, a) 6= {} for all q ∈ Q and a ∈ Σ

Can always be achieved by adding ‘trap states’ or ‘trap locations’, resp.

FMSD: Model Checking with Temporal Logic /GU 170915 5 / 36

Product of Transition System and Büchi Automaton

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton)

Let T = (S ,→,So , L) be a transition system over AP and
B = (Q, δ,Q0,F) be a Büchi automaton over the alphabet 2AP .
Then, T ⊗ B is the following model checking graph:

T ⊗ B = (S × Q,→′,N0,Na)

where:

I 〈s, q〉 →′ 〈s ′, q′〉 iff s → s ′ and (q, L(s ′), q′) ∈ δ
I N0 = {〈s0, q〉|s0 ∈ S0 and ∃q0 ∈ Q0.(q0, L(s0), q) ∈ δ}
I Na = {〈s, q〉|q ∈ F}

FMSD: Model Checking with Temporal Logic /GU 170915 6 / 36

Model Checking Example

Assume AP = {red, green}

T :
s0 s1

L(s0) = {red}
L(s1) = {green}

We want to show “infinitely often green”: φ ≡ �♦green

Construct BA B¬φ for negation: ¬φ ≡ ¬�♦green ≡ ♦�¬green

B¬φ:
q0start q1 q2

Σ

{},{red} {green},{green, red}

{},{red} Σ

FMSD: Model Checking with Temporal Logic /GU 170915 7 / 36

Model Checking Example

Model checking graph T ⊗ B¬φ:

〈s0, q0〉 〈s0, q1〉 〈s0, q2〉

〈s1, q0〉 〈s1, q1〉 〈s1, q2〉

has no path looping throug an accepting node!

T |= φ
FMSD: Model Checking with Temporal Logic /GU 170915 8 / 36

Model Checking with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”
failing

run
model.trail

interactive /random/ guided

simulation

-a

or

ei
th

er
FMSD: Model Checking with Temporal Logic /GU 170915 9 / 36

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements 4
I meta labels

I end labels 4
I accept labels (briefly)
I progress labels

stating properties outside model using

I never claims (briefly)
I temporal logic formulas (today’s main topic)

FMSD: Model Checking with Temporal Logic /GU 170915 10 / 36

Preliminaries

1. Accept labels in Promela ↔ Büchi automata

2. Fairness

FMSD: Model Checking with Temporal Logic /GU 170915 11 / 36

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form “acceptxxx:” is
called an accept location.

Accept locations can be used to specify cyclic behavior

Definition (Acceptance Cycle)

A run which infinitely often passes through an accept location is called
an acceptance cycle.

Acceptance cycles are mainly used in never claims (see below), to define
(undesired) infinite behavior

FMSD: Model Checking with Temporal Logic /GU 170915 12 / 36

Preliminaries 2: Fairness

Does this model terminate in each run? Simulate: start/fair.pml

byte n = 0;

bool flag = f a l s e ;

active proctype P() {

do :: flag -> break
:: e l se -> n = 5 - n

od
}

active proctype Q() {

flag = true
}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

FMSD: Model Checking with Temporal Logic /GU 170915 13 / 36

Model Checking of Temporal Properties

Many correctness properties not expressible by assertions

I All properties that involve state changes

I Temporal logic expressive enough to characterize many (but not all)
LT properties

In this course: “temporal logic” synonymous with “linear temporal logic”

Today: model checking of properties formulated in temporal logic

FMSD: Model Checking with Temporal Logic /GU 170915 14 / 36

Beyond Assertions

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

critical ++;

assert (critical <= 1);

critical --;

Drawbacks

I No separation of concerns (model vs. correctness property)
I Changing assertions is error prone (easily out of sync)
I Easy to forget assertions:

correctness property might be violated at unexpected locations
I Many interesting properties not expressible via assertions

FMSD: Model Checking with Temporal Logic /GU 170915 15 / 36

Temporal Correctness Properties

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion
“critical <= 1 holds throughout each run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout each run”

Examples of properties impossible to express as assertions:

Absence of Deadlock
“Whenever several processes try to enter their critical
section, eventually one of them does so.”

Absence of Starvation
“Whenever one process tries to enter its critical section,
eventually that process does so.”

These are temporal properties ⇒ use temporal logic

FMSD: Model Checking with Temporal Logic /GU 170915 16 / 36

Boolean Temporal Logic

Numerical variables in expressions

I Expressions such as i <= len-1 contain numerical variables

I Propositional LTL as introduced so far only knows propositions

I Slight generalisation of LTL required

In Boolean Temporal Logic, atomic building blocks are
Boolean expressions over Promela variables

FMSD: Model Checking with Temporal Logic /GU 170915 17 / 36

Boolean Temporal Logic over Promela

Set ForBTL of Boolean Temporal Formulas (simplified)

I all global Promela variables and constants of type bool/bit

are ∈ ForBTL
I if e1 and e2 are numerical Promela expressions, then all of

e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL
I if P is a process and l is a label in P, then P@l is ∈ ForBTL

(P@l reads “P is at l”)

I if φ and ψ are formulas ∈ ForBTL, then all of

!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ
[]φ, <>φ, φ Uψ

are ∈ ForBTL

FMSD: Model Checking with Temporal Logic /GU 170915 18 / 36

Semantics of Boolean Temporal Logic

A run σ through a Promela model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

I Lj maps each running process to its current location counter

I From Lj to Lj+1, only one of the location counters has advanced
(exception: channel rendezvous)

I Ij maps each variable in M to its current value

Arithmetic and relational expressions are interpreted in states as
expected; e.g. Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l

Evaluating other formulas ∈ ForBTL in runs σ: see previous lecture
FMSD: Model Checking with Temporal Logic /GU 170915 19 / 36

Safety Properties

Safety Properties

I state that something ‘good’ is guaranteed throughout each run

I each violating run violates the property after finitely many steps

Example

TL formula [](critical <= 1)

“It is guaranteed throughout each run that at most one process visits its
critical section at any time.”

or, equivalently:
“It will never happen that more than one process visits its critical
section.”

Any violating run would have (critical <= 1) after finite time

FMSD: Model Checking with Temporal Logic /GU 170915 20 / 36

Applying Temporal Logic to Critical Section Problem

We want to verify [](critical<=1) as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

critical ++;

/* critical activity */

critical --;

inCriticalP = f a l s e
od

}

/* similarly for process Q */

FMSD: Model Checking with Temporal Logic /GU 170915 21 / 36

Model Checking a Safety Property with Spin

Command Line Execution

Add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

> spin -a file .pml

> gcc -DSAFETY -o pan pan.c

> ./pan -N name

Demo: target/safety1.pml

I The ‘ltl name { TL-formula }’ construct must be part of your
lab submission!

ltl definitions not part of Ben Ari’s book (Spin≤ 6): ignore 5.3.2, etc.

FMSD: Model Checking with Temporal Logic /GU 170915 22 / 36

Model Checking a Safety Property
using Web Interface

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Safety is selected

4. enter name of LTL formula in according field

5. select Verify

Demo: safety1.pml

FMSD: Model Checking with Temporal Logic /GU 170915 23 / 36

Model Checking a Safety Property using jSpin

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into jSpin

3. write name in ‘LTL formula’ field

4. ensure Safety is selected

5. select Verify
I (corresponds to command line ./pan -N name ...)

6. (if necessary) select Stop to terminate too long verification

Demo: safety1.pml

FMSD: Model Checking with Temporal Logic /GU 170915 24 / 36

Temporal Model Checking without Ghost Variables

We want to verify mutual exclusion without using ghost variables.

bool inCriticalP = fa l se , inCriticalQ = f a l s e ;

active proctype P() {

do :: atomic {

!inCriticalQ;

inCriticalP = true
}

cs: /* critical activity */

inCriticalP = f a l s e
od

}

/* similar for process Q with same label cs: */

ltl mutualExcl { []!(P@cs && Q@cs) }

Demo: start/noGhost.pml

FMSD: Model Checking with Temporal Logic /GU 170915 25 / 36

Never Claims: Processes trying to show user wrong

Büchi automaton, as Promela process, for negated property

1. Negated TL formula translated to ‘never’ process

2. accepting locations in Büchi automaton represented with help of
accept labels (“acceptxxx:”)

3. If one of these reached infinitely often, the orig. property is violated

Example (Never claim for <>p, simplified for readability)

never { /* !(<>p) */

accept_xyz: /* passed ∞ often iff !(<>p) holds */

do
:: (!p)

od
}

FMSD: Model Checking with Temporal Logic /GU 170915 26 / 36

Liveness Properties

Liveness Properties

I state that something good (φ) eventually happens in each run

I each violating requires infinitely many steps

Example

<>csp

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

FMSD: Model Checking with Temporal Logic /GU 170915 27 / 36

Applying Temporal Logic to Starvation Problem

We want to verify <>csp as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

csp = true;
/* critical activity */

csp = f a l s e ;

inCriticalP = f a l s e
od

}

/* similarly for process Q */

/* there , using csq */

FMSD: Model Checking with Temporal Logic /GU 170915 28 / 36

Model Checking a Liveness Property using jSpin

1. open Promela file liveness1.pml

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. for the moment uncheck Weak Fairness (see discussion below)

5. select Verify

FMSD: Model Checking with Temporal Logic /GU 170915 29 / 36

Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

The liveness property on one process “had no chance”.
Not even weak fairness was switched on!

FMSD: Model Checking with Temporal Logic /GU 170915 30 / 36

Model Checking Liveness with Weak Fairness
using jSpin

Always check Weak fairness when verifying liveness

1. open Promela file

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. ensure Weak fairness is checked

5. select Verify

FMSD: Model Checking with Temporal Logic /GU 170915 31 / 36

Model Checking Liveness
using Web Interface

1. add definition of TL formula to Promela file

Example ltl pWillEnterC { <>csp }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Acceptance is selected

4. enter name of LTL formula in according field

5. ensure Weak fairness is checked

6. select Verify

Demo: liveness1.pml

FMSD: Model Checking with Temporal Logic /GU 170915 32 / 36

Model Checking Liveness
using Spin directly

Command Line Execution

Make sure ltl name { TL-formula } is in file.pml

> spin -a file .pml

> gcc -o pan pan.c

> ./pan -a -f [-N name]

-a acceptance cycles, -f weak fairness

Demo: start/liveness1.pml

FMSD: Model Checking with Temporal Logic /GU 170915 33 / 36

Limitation of Weak Fairness

Verification fails again!

Why?

Weak fairness is too weak . . .

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Restriction to weak fairness is principal limitation of Spin

Here, liveness needs strong fairness, which is not supported by Spin.

FMSD: Model Checking with Temporal Logic /GU 170915 34 / 36

Revisit fair.pml

I Specify liveness of fair.pml using labels

I Prove termination Demo: target/fair.pml

I Here, weak fairness is needed, and sufficient

FMSD: Model Checking with Temporal Logic /GU 170915 35 / 36

Literature for this Lecture

Ben-Ari Chapter 5
except Sections 5.3.2, 5.3.3, 5.4.2
(ltl construct replaces #define and -f option of Spin)

FMSD: Model Checking with Temporal Logic /GU 170915 36 / 36

	Spin Model Checking
	Model Checking with Spin
	Preliminaries
	Verification of Temporal Properties
	Boolean Temporal Logic
	Safety Properties
	Model Checking Safety
	Without Ghost Variables
	Liveness Properties
	Using Weak Fairness
	Literature

