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Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system T (e.g., derived from a Promela program).

Verification task: is the LTL formula φ satisfied in all traces of T , i.e.,

T |= φ ?
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LTL Model Checking—Overview

T |= φ ?

1. Construct generalised Büchi automaton GB¬φ for negation of φ

2. Construct an equivalent normal Büchi automaton B¬φ, i.e.,

Lω(B¬φ) = Lω(GB¬φ)

3. Construct product T ⊗ B¬φ
4. Analyse whether T ⊗ B¬φ has a

path π looping through an ‘accepting node’

5. If such a π is found, then

T 6|= φ
and

σπ is a counter example.

If no such π is found, then

T |= φ
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Product of Transition System and Büchi Automaton

A model checking graph is a directed graph with initial and accepting
nodes.

Definition (Model Checking Graph)

A model checking graph (N,→,N0,Na) is composed of:

I finite, non-empty set of nodes N

I an ‘arrow’ relation →⊆ N × N

I a non-empty set of initial nodes N0 ⊆ N

I a set of accepting nodes Na ⊆ N
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Product of Transition System and Büchi Automaton

In the following, we assume without further mention:

1. transition systems without terminal states:
{s ′ ∈ S |s → s ′} 6= ∅ for all states s ∈ S

2. total Büchi automata:
δ(q, a) 6= {} for all q ∈ Q and a ∈ Σ

Can always be achieved by adding ‘trap states’ or ‘trap locations’, resp.
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Product of Transition System and Büchi Automaton

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton)

Let T = (S ,→,So , L) be a transition system over AP and
B = (Q, δ,Q0,F ) be a Büchi automaton over the alphabet 2AP .
Then, T ⊗ B is the following model checking graph:

T ⊗ B = (S × Q,→′,N0,Na)

where:

I 〈s, q〉 →′ 〈s ′, q′〉 iff s → s ′ and (q, L(s ′), q′) ∈ δ
I N0 = {〈s0, q〉|s0 ∈ S0 and ∃q0 ∈ Q0.(q0, L(s0), q) ∈ δ}
I Na = {〈s, q〉|q ∈ F}
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Model Checking Example

Assume AP = {red, green}

T :
s0 s1

L(s0) = {red}
L(s1) = {green}

We want to show “infinitely often green”: φ ≡ �♦green

Construct BA B¬φ for negation: ¬φ ≡ ¬�♦green ≡ ♦�¬green

B¬φ:
q0start q1 q2

Σ

{},{red} {green},{green, red}

{},{red} Σ
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Model Checking Example

Model checking graph T ⊗ B¬φ:

〈s0, q0〉 〈s0, q1〉 〈s0, q2〉

〈s1, q0〉 〈s1, q1〉 〈s1, q2〉

has no path looping throug an accepting node!

T |= φ
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Model Checking with Spin
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Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements 4
I meta labels

I end labels 4
I accept labels (briefly)
I progress labels

stating properties outside model using

I never claims (briefly)
I temporal logic formulas (today’s main topic)
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Preliminaries

1. Accept labels in Promela ↔ Büchi automata

2. Fairness
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Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form “acceptxxx:” is
called an accept location.

Accept locations can be used to specify cyclic behavior

Definition (Acceptance Cycle)

A run which infinitely often passes through an accept location is called
an acceptance cycle.

Acceptance cycles are mainly used in never claims (see below), to define
(undesired) infinite behavior
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Preliminaries 2: Fairness

Does this model terminate in each run? Simulate: start/fair.pml

byte n = 0;

bool flag = f a l s e ;

active proctype P() {

do :: flag -> break
:: e l se -> n = 5 - n

od
}

active proctype Q() {

flag = true
}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.
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Model Checking of Temporal Properties

Many correctness properties not expressible by assertions

I All properties that involve state changes

I Temporal logic expressive enough to characterize many (but not all)
LT properties

In this course: “temporal logic” synonymous with “linear temporal logic”

Today: model checking of properties formulated in temporal logic
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Beyond Assertions

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

critical ++;

assert ( critical <= 1 );

critical --;

Drawbacks

I No separation of concerns (model vs. correctness property)
I Changing assertions is error prone (easily out of sync)
I Easy to forget assertions:

correctness property might be violated at unexpected locations
I Many interesting properties not expressible via assertions
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Temporal Correctness Properties

Examples of properties where assertions are suboptimal (too local):

Mutual Exclusion
“critical <= 1 holds throughout each run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout each run”

Examples of properties impossible to express as assertions:

Absence of Deadlock
“Whenever several processes try to enter their critical
section, eventually one of them does so.”

Absence of Starvation
“Whenever one process tries to enter its critical section,
eventually that process does so.”

These are temporal properties ⇒ use temporal logic
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Boolean Temporal Logic

Numerical variables in expressions

I Expressions such as i <= len-1 contain numerical variables

I Propositional LTL as introduced so far only knows propositions

I Slight generalisation of LTL required

In Boolean Temporal Logic, atomic building blocks are
Boolean expressions over Promela variables

FMSD: Model Checking with Temporal Logic /GU 170915 17 / 36



Boolean Temporal Logic over Promela

Set ForBTL of Boolean Temporal Formulas (simplified)

I all global Promela variables and constants of type bool/bit

are ∈ ForBTL
I if e1 and e2 are numerical Promela expressions, then all of

e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL
I if P is a process and l is a label in P, then P@l is ∈ ForBTL

(P@l reads “P is at l”)

I if φ and ψ are formulas ∈ ForBTL, then all of

!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ
[ ]φ, <>φ, φ Uψ

are ∈ ForBTL
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Semantics of Boolean Temporal Logic

A run σ through a Promela model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

I Lj maps each running process to its current location counter

I From Lj to Lj+1, only one of the location counters has advanced
(exception: channel rendezvous)

I Ij maps each variable in M to its current value

Arithmetic and relational expressions are interpreted in states as
expected; e.g. Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l

Evaluating other formulas ∈ ForBTL in runs σ: see previous lecture
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Safety Properties

Safety Properties

I state that something ‘good’ is guaranteed throughout each run

I each violating run violates the property after finitely many steps

Example

TL formula [](critical <= 1)

“It is guaranteed throughout each run that at most one process visits its
critical section at any time.”

or, equivalently:
“It will never happen that more than one process visits its critical
section.”

Any violating run would have (critical <= 1) after finite time
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Applying Temporal Logic to Critical Section Problem

We want to verify [](critical<=1) as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

critical ++;

/* critical activity */

critical --;

inCriticalP = f a l s e
od

}

/* similarly for process Q */
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Model Checking a Safety Property with Spin

Command Line Execution

Add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

> spin -a file .pml

> gcc -DSAFETY -o pan pan.c

> ./pan -N name

Demo: target/safety1.pml

I The ‘ltl name { TL-formula }’ construct must be part of your
lab submission!

ltl definitions not part of Ben Ari’s book (Spin≤ 6): ignore 5.3.2, etc.
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Model Checking a Safety Property
using Web Interface

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Safety is selected

4. enter name of LTL formula in according field

5. select Verify

Demo: safety1.pml
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Model Checking a Safety Property using jSpin

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into jSpin

3. write name in ‘LTL formula’ field

4. ensure Safety is selected

5. select Verify
I (corresponds to command line ./pan -N name ...)

6. (if necessary) select Stop to terminate too long verification

Demo: safety1.pml
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Temporal Model Checking without Ghost Variables

We want to verify mutual exclusion without using ghost variables.

bool inCriticalP = fa l se , inCriticalQ = f a l s e ;

active proctype P() {

do :: atomic {

!inCriticalQ;

inCriticalP = true
}

cs: /* critical activity */

inCriticalP = f a l s e
od

}

/* similar for process Q with same label cs: */

ltl mutualExcl { []!( P@cs && Q@cs) }

Demo: start/noGhost.pml
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Never Claims: Processes trying to show user wrong

Büchi automaton, as Promela process, for negated property

1. Negated TL formula translated to ‘never’ process

2. accepting locations in Büchi automaton represented with help of
accept labels (“acceptxxx:”)

3. If one of these reached infinitely often, the orig. property is violated

Example (Never claim for <>p, simplified for readability)

never { /* !(<>p) */

accept_xyz: /* passed ∞ often iff !(<>p) holds */

do
:: (!p)

od
}
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Liveness Properties

Liveness Properties

I state that something good (φ) eventually happens in each run

I each violating requires infinitely many steps

Example

<>csp

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”
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Applying Temporal Logic to Starvation Problem

We want to verify <>csp as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

csp = true;
/* critical activity */

csp = f a l s e ;

inCriticalP = f a l s e
od

}

/* similarly for process Q */

/* there , using csq */

FMSD: Model Checking with Temporal Logic /GU 170915 28 / 36



Model Checking a Liveness Property using jSpin

1. open Promela file liveness1.pml

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. for the moment uncheck Weak Fairness (see discussion below)

5. select Verify
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Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

The liveness property on one process “had no chance”.
Not even weak fairness was switched on!
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Model Checking Liveness with Weak Fairness
using jSpin

Always check Weak fairness when verifying liveness

1. open Promela file

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. ensure Weak fairness is checked

5. select Verify
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Model Checking Liveness
using Web Interface

1. add definition of TL formula to Promela file

Example ltl pWillEnterC { <>csp }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Acceptance is selected

4. enter name of LTL formula in according field

5. ensure Weak fairness is checked

6. select Verify

Demo: liveness1.pml
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Model Checking Liveness
using Spin directly

Command Line Execution

Make sure ltl name { TL-formula } is in file.pml

> spin -a file .pml

> gcc -o pan pan.c

> ./pan -a -f [-N name ]

-a acceptance cycles, -f weak fairness

Demo: start/liveness1.pml
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Limitation of Weak Fairness

Verification fails again!

Why?

Weak fairness is too weak . . .

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Restriction to weak fairness is principal limitation of Spin

Here, liveness needs strong fairness, which is not supported by Spin.
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Revisit fair.pml

I Specify liveness of fair.pml using labels

I Prove termination Demo: target/fair.pml

I Here, weak fairness is needed, and sufficient
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Literature for this Lecture

Ben-Ari Chapter 5
except Sections 5.3.2, 5.3.3, 5.4.2
(ltl construct replaces #define and -f option of Spin)
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