
Formal Methods for Software Development
Reasoning about Programs with Loops and Method Calls

Wolfgang Ahrendt

17 October 2017

FMSD: Reasoning about Loops & Methods /GU 171017 1 / 47

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:

I works on first active statement
I decomposition of complex statements into simpler ones
I simple assignments to updates
I accumulated update captures changed program state (abbr. w. U)
I control flow branching induces proof splitting
I application of update computes weakest precondition of U ′ wrt. φ

Γ′ =⇒ {U ′}φ . . .

.

‘branch1’ Γ, {U}(isValid = TRUE) =⇒ {U}〈{ok=true;}...〉φ
‘branch2’ Γ, {U}(isValid = FALSE) =⇒ {U}〈...〉φ

Γ =⇒ {t := j‖j := j + 1‖i := j}{U}{U}〈if(isValid){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(isValid){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(isValid){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(isValid){ok=true;}...〉φ
FMSD: Reasoning about Loops & Methods /GU 171017 2 / 47

An Example

\javaSource "src/";

\programVariables{

Person p;

int j;

}

\problem {

(\forall int i;

(!p=null ->

({j := i}\<{p.setAge(j);}\>(p.age = i))))

}

FMSD: Reasoning about Loops & Methods /GU 171017 3 / 47

Method Calls

Method Call with actual parameters arg0, . . . , argn

〈o.m(arg0, . . . , argn); ω〉φ

assume m declared as void m(τ0 p0, . . . , τn pn)

Actions of rule methodCall

1. Declare new local variables p#i, initialize them with actual
parameter: τi p#i =argi ;

2. Look-up implementing class C of m;
split proof if implementation cannot be uniquely determined.

3. Replace method call with implementation invocation
o.m(p#0, . . . , p#n)@C

FMSD: Reasoning about Loops & Methods /GU 171017 4 / 47

Method Calls Cont’d

After executing the initialisers: τi p#i =argi ; apply:

Method Body Expand

Call rule methodBodyExpand

Γ =⇒ 〈method-frame(source=m(τ0,...,τn)@C, this=o):{body}ω〉φ,∆
Γ =⇒ 〈o.m(p#0,...,p#n)@C; ω〉φ,∆

1. Replaces method invocation by method frame with method body

2. Renames pi in body to p#i

Method frames:
Required in proof to represent call stack

Demo
methods/instanceMethodInlineSimple.key

methods/inlineDynamicDispatch.key
FMSD: Reasoning about Loops & Methods /GU 171017 5 / 47

Localisation of Fields and Method Implementations

JAVA has complex rules for localisation of
fields and method implementations

I Polymorphism

I Late binding (dynamic dispatch)

I Scoping (class vs. instance)

I Visibility (private, protected, public)

Proof split into cases if implementation not statically determined

FMSD: Reasoning about Loops & Methods /GU 171017 6 / 47

Object initialization

JAVA has complex rules for object initialization

I Chain of constructor calls until Object

I Implicit calls to super()

I Visibility issues

I Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),. . .
which are then symbolically executed

FMSD: Reasoning about Loops & Methods /GU 171017 7 / 47

Limitations of Method Inlining: methodBodyExpand

I Source code might be unavailable
I API method implementation vendor-specific
I Source code often unavailable for commercial APIs

I Method is invoked multiple times in a program
I Avoid multiple symbolic execution of identical code

I Cannot handle unbounded recursion

I Not modular:
Changing a method requires re-verification of all callers

Use method contract instead of method implementation:

1. Show that requires clause is satisfied

2. Continue after method call:
I assume ensures clause
I forget prestate values of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 171017 8 / 47

Method Contract Rule: Normal Behavior Case
Warning: Simplified version

/*@ public normal_behavior

@ requires preNormal;

@ ensures postNormal;

@ assignable mod;

@*/ // implementation contract of m()

Γ =⇒ UF(preNormal),∆ (precondition)
Γ =⇒ UVmod(F(postNormal) → 〈π ω〉φ),∆ (normal)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I Vmod: anonymising update,
forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 171017 9 / 47

JML Method Contracts Revisited

/*@ public normal_behavior

@ requires preNormal;

@ ensures postNormal;

@ assignable mod;

@*/

T m(T1 a1, ..., Tn an) { ... }

Implicit Preconditions and Postconditions

I The object referenced by this is not null: this!=null

(precondition only; this cannot be changed by method)

I The heap is wellformed: wellFormed(heap) (precondition only)

I Invariant for ’this’: \invariant_for(this)

FMSD: Reasoning about Loops & Methods /GU 171017 10 / 47

Method Contract Rule: Normal Behavior Case
Warning: Simplified version

/*@ public normal_behavior

@ requires preNormal;

@ ensures postNormal;

@ assignable mod;

@*/ // implementation contract of m()

Γ =⇒ UF(preNormal),∆ (precondition)
Γ =⇒ UVmod(F(postNormal) → 〈π ω〉φ),∆ (normal)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I Vmod: anonymising update,
forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 171017 11 / 47

Keeping the Context

I Want to keep part of prestate U that is unmodified by called method

I assignable clause of contract tells what can possibly be modified

@ assignable mod;

I How to erase all values of assignable locations in state U ?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 171017 12 / 47

Anonymising Heap Locations

Define anonymising function anon: Heap× LocSet× Heap→ Heap

The resulting heap anon(...) coincides with the first heap on all locations
except for those specified in the location set. Those locations attain the
value specified by the second heap.

Definition:

select(anon(h1, locs, h2), o, f) =

{
select(h2, o, f) if (o, f) ∈ locs
select(h1, o, f) otherwise

Usage:
Vmod = {heap := anon(heap, locsmod , han)}

where han a new (not yet used) constant of type Heap

Effect: After Vmod , modfied locations have unknown values

FMSD: Reasoning about Loops & Methods /GU 171017 13 / 47

Anonymising Heap Locations: Example

@ assignable o.a, this.*;

To erase all knowledge about the values of the locations of the assignable
expression:

I Anonymise the current heap on the designated locations:

anon(heap, {(o, a)} ∪ allFields(this), han)

I Make that anonymised current heap the new current heap.

Vmod = {heap := anon(heap, {(o, a)} ∪ allFields(this), han)}

FMSD: Reasoning about Loops & Methods /GU 171017 14 / 47

Method Contract Rule: Exceptional Behavior Case
Warning: Simplified version

/*@ public exceptional_behavior

@ requires preExc;

@ signals (Exception exc) postExc;

@ assignable mod;

@*/

Γ =⇒ UF(preExc),∆ (precondition)
Γ =⇒ UVmod((F(postExc) ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 171017 15 / 47

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)
Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL
I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 171017 16 / 47

Method Contract Rule: Example

class Person {

private /*@ spec_public @*/ int age;

/*@ public normal_behavior

@ requires age < 29;

@ ensures age == \old(age) + 1;

@ assignable age;

@ also

@ public exceptional_behavior

@ requires age >= 29;

@ signals_only ForeverYoungException;

@ assignable \nothing;

@//allows object creation (not \strictly_nothing)

@*/

public void birthday() {

if (age >= 29) throw new ForeverYoungException();

age++;

} }
FMSD: Reasoning about Loops & Methods /GU 171017 17 / 47

Method Contract Rule: Example Cont’d

Demo

methods/useContractForBirthday.key

I Prove without contracts
I Method treatment: Expand

I Prove with contracts (until method contract application)
I Method treatment: Contract

I Prove used contracts
I Method treatment: Expand
I Select contracts for birthday() in src/Person.java
I Prove both specification cases

FMSD: Reasoning about Loops & Methods /GU 171017 18 / 47

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

We need an invariant rule (or some form of induction)

FMSD: Reasoning about Loops & Methods /GU 171017 19 / 47

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
FMSD: Reasoning about Loops & Methods /GU 171017 20 / 47

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed? i <= n

Is i <= n preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 171017 21 / 47

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

n >= 0 & n = m & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = m

Look at desired postcondition i = m

What, in addition to negated guard i >= n, is needed?
i <= n & n = m

Is i <= n & n = m preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!

FMSD: Reasoning about Loops & Methods /GU 171017 22 / 47

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

First attempt: use postcondition x = x0 + y0

I Not true at start whenever y0 > 0

I Not preserved by loop, because x is increased

FMSD: Reasoning about Loops & Methods /GU 171017 23 / 47

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

What stays invariant?

I The sum of x and y: x + y = x0 + y0 “Generalization”

I Can help to think of “δ” between x and x0 + y0

FMSD: Reasoning about Loops & Methods /GU 171017 23 / 47

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Checking the invariant

Is x + y = x0 + y0 a good invariant?

I Holds in the beginning and is preserved by loop

I But postcondition not achieved by x + y = x0 + y0 and exit
condition y <= 0

FMSD: Reasoning about Loops & Methods /GU 171017 23 / 47

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Strenghtening the invariant

Postcondition holds if y = 0

I Add y >= 0 to invariant: x + y = x0 + y0 & y >= 0

Demo loops/simple3.key

FMSD: Reasoning about Loops & Methods /GU 171017 23 / 47

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b = TRUE =⇒ [p]Inv (preserved)
Inv , b = FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ,¬∆ cannot be assumed for arbitrary iterations or at loop exit
2nd premise State after some loop iterations is not U
3rd premise State at loop exit is not U

I Context contains preconditions and class invariants

I Only way to propagate context: add to loop invariant Inv

FMSD: Reasoning about Loops & Methods /GU 171017 24 / 47

Example

Precondition: a 6= null & ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 171017 25 / 47

Keeping the Context (As In Method Contract Rule)

I Want to keep part of the context that is not modified by loop

I assignable clauses for loops tell what can possibly be modified

@ assignable i, a[*];

I How to erase all values of assignable locations?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 171017 26 / 47

Anonymising JAVA Locations

@ assignable i, a[*];

To erase all knowledge about these assignable lactions:

I introduce a new (not yet used) constant of type int, e.g., c
I introduce a new (not yet used) constant of type Heap, e.g., han

I anonymise the current heap: anon(heap, allFields(a), han)

I compute anonymizing update for assignable locations

V = {i := c || heap := anon(heap, allFields(a), han)}

For local program variables (e.g., i) KeY computes assignable clause
automatically

FMSD: Reasoning about Loops & Methods /GU 171017 27 / 47

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 171017 28 / 47

Example with Improved Invariant Rule

Precondition: a 6= null & ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 171017 29 / 47

Example in JML/JAVA – Loop.java Demo

public int[] a;

/*@ public normal_behavior

@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);

@ diverges true;

@*/

public void m() {

int i = 0;

/*@ loop_invariant

@ 0 <= i && i <= a.length &&

@ (\forall int x; 0<=x && x<i; a[x]==1);

@ assignable a[*];

@*/

while(i < a.length) {

a[i] = 1;

i++;

}

}
FMSD: Reasoning about Loops & Methods /GU 171017 30 / 47

Example from an ealier Lecture

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

] (r = x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Needed Invariant:

@ loop_invariant

@ i>=0 && i <= n && 2*r == i*(i + 1);

@ assignable \nothing; // no heap locations changed

Demo Loop2.java

FMSD: Reasoning about Loops & Methods /GU 171017 31 / 47

Hints

Proving assignable

I Invariant rule above assumes that assignable is correct
E.g., possible to prove nonsense with incorrect
assignable \nothing;

I Invariant rule of KeY generates proof obligation that ensures
correctness of assignable
This proof obligation is part of ‘Body Preserves Invariant’ branch

Setting in the KeY Prover when proving loops w. given invariant

I Loop treatment: Invariant

I Quantifier treatment: No Splits with Progs

I If program contains *, /: Arithmetic treatment: DefOps

I Is search limit high enough (time out, rule apps.)?

I To prove only partial correctness, add diverges true;

FMSD: Reasoning about Loops & Methods /GU 171017 32 / 47

Total Correctness

Is the sequent

=⇒ [i = -1; while (true){}]i = 4711

provable?

Yes, e.g.,

@ loop_invariant true;

@ assignable \nothing;

With this, correctness of non-terminating loop is provable:

I Invariant trivially initially valid and preserved:
Initial Case and Preserved Case close immediately

I Negated loop condition is false: Use case close immediately

But need a method to prove termination of loops

FMSD: Reasoning about Loops & Methods /GU 171017 33 / 47

Mapping Loop Execution to Well-Founded Order

while (b) {

body

}

if (b) { body }1
...

if (b) { body }17
if (b) { body }18

...

N

...

2

1

0

Need to find expression getting smaller wrt N in each iteration

Such an expression is called a decreasing term or variant

FMSD: Reasoning about Loops & Methods /GU 171017 34 / 47

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 171017 35 / 47

Final Example: Computing the GCD(see 16.3.8 [KeYbook])

public class Gcd {

/*@ public normal_behavior

@ requires _small>=0 && _big>=_small;

@ ensures _big!=0 ==>

@ (_big % \result == 0 && _small % \result == 0 &&

@ (\forall int x; x>0 && _big % x == 0

@ && _small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

}

}
FMSD: Reasoning about Loops & Methods /GU 171017 36 / 47

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then
I the return value \result is a divisor of both arguments
I all other divisors x of the arguments are also dividers

of \result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 171017 37 / 47

Computing the GCD: Specify the Loop Body

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Which locations are changed (at most)?

@ assignable \nothing; // no heap locations changed

What is the variant?

@ decreases small;

FMSD: Reasoning about Loops & Methods /GU 171017 38 / 47

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant
I Order between small and big preserved by loop: big>=small

I Possible for big to become 0 in a loop iteration? No.
I Adding big>0 to loop invariant? No. Not initially valid.
I Weaker condition necessary: big==0 ==> _big==0

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 171017 39 / 47

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant
I Order between small and big preserved by loop: big>=small

I Weaker condition necessary: big==0 ==> _big==0

I What does the loop preserve? The set of dividers!
All common dividers of _big, _small are also dividers of big, small

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));
FMSD: Reasoning about Loops & Methods /GU 171017 39 / 47

Computing the GCD: Final Specification

int big = _big; int small = _small;

/*@ loop_invariant small >= 0 && big >= small &&

@ (big == 0 ==> _big == 0) &&

@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)

@ <==>

@ (big % x == 0 && small % x == 0));

@ decreases small;

@ assignable \nothing;

@*/

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big; // assigned to \result

Why does big divides _small and _big follow from the loop invariant?
If big is positive, one can instantiate x with it, and use small == 0

FMSD: Reasoning about Loops & Methods /GU 171017 40 / 47

Computing the GCD: Demo

Demo loops/Gcd.java

1. Show Gcd.java and gcd(a,b)

2. Ensure that “DefOps” and “Contract” is selected, ≥ 10,000 steps

3. Proof contract of gcd(), using contract of gcdHelp()

4. Note KeY check sign in parentheses:

4.1 Click “Proof Management”
4.2 Choose tab “By Proof”
4.3 Select proof of gcd()
4.4 Select used method contract of gcdHelp()
4.5 Click “Start Proof”

5. After finishing proof obligations of gcdHelp() parentheses are gone

FMSD: Reasoning about Loops & Methods /GU 171017 41 / 47

Some Hints On Finding Invariants

General Advice

I Invariants must be developed, they don’t come out of thin air!

I Be as systematic in deriving invariants as when debugging a program

FMSD: Reasoning about Loops & Methods /GU 171017 42 / 47

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Can you add stuff from the precondition?
I Does it need strengthening?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prue and retry

FMSD: Reasoning about Loops & Methods /GU 171017 43 / 47

Understanding Unclosed Proofs (see also p.528ff [KeYbook])

Reasons why a proof may not close

I Buggy or incomplete specification

I Bug in program

I Maximal number of steps reached: restart or increase # of steps

I Automatic proof search fails: manual rule applications necessary

Understanding open proof goals

I Follow the control flow from the proof root to the open goal

I Branch labels give useful hints

I Identify unprovable part of post condition or invariant

I Sequent remains always in “pre-state”
Constraints on program variables refer to value at start of program
(exception: formula is behind update or modality)

I NB: Γ =⇒ o = null,∆ is equivalent to Γ, o 6= null =⇒ ∆

FMSD: Reasoning about Loops & Methods /GU 171017 44 / 47

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

I W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook], p.528ff + Section 15.3 (also for Lab2)

I B. Beckert, R. Hähnle, M. Hentschel, P.H. Schmitt,
Formal Verification with KeY: A Tutorial
Chapter 16 in [KeYbook], except Section 16.6

further reading:

I B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java
Chapter 3 in [KeYbook], Section 3.7

FMSD: Reasoning about Loops & Methods /GU 171017 45 / 47

link.springer.com

Master’s Thesis Projects in Formal Methods

Examples:

I Extracting tests from runtime traces

I JM2L: a library of specification models for Java

I Tests from failed proofs

I Dynamic invariants for runtime verification

I Runtime verification of reactive systems

I Compositional runtime enforcement of reactive systems

I Learning automata (properties) from example traces

I Application of runtime monitoring for automotive systems

I Malware on Chrome: Modifying Secure Preferences

I Browser Extensions Metadata Correlation

I Chromium Modification to Parallelise Browser Extensions

I Various master theses on Blockchain, Bitcoin, and Smart Contracts

FMSD: Reasoning about Loops & Methods /GU 171017 46 / 47

Master’s Thesis Projects in Formal Methods

see Formal Methods Master Theses on the web (cklick here).
(and come back, many edits on that page these days)

FMSD: Reasoning about Loops & Methods /GU 171017 47 / 47

https://masterthesis.cms.chalmers.se/proposal-keywords/formal-methods

	Titlepage
	Java Card Dynamic Logic
	Method Calls
	Initialization
	Method Contracts
	Anonymising Updates
	Contracts for Exceptional Behavior

	Loop Invariants
	Basic Invariant Rule
	Generalization
	Context Loss
	Anonymising Updates
	Improved Invariant Rule
	Total Correctness
	Hints On Finding Invariants
	Understanding Proofs
	Literature
	Master's Thesis Projects in Formal Methods

